# Determining dark matter particle properties with direct detection experiments

Riccardo Catena

Chalmers University

February 22, 2018



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

- Dark matter (DM) direct detection
- Current status and prospects
- New! Determining the DM particle spin with next generation direct detection experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

#### DM direct detection

Motivation and strategy:



Differential rate of DM-nucleus scattering events in terrestrial detectors

$$\frac{\mathrm{d}\mathcal{R}}{\mathrm{d}E_R} = \frac{\rho_{\chi}}{m_{\chi}m_T} \int_{|\mathbf{v}| > v_{\min}} \mathrm{d}^3 \mathbf{v} \, |\mathbf{v}| f_{\chi}(\mathbf{v} + \mathbf{v}_{\oplus}) \frac{\mathrm{d}\sigma_T}{\mathrm{d}E_R}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## DM direct detection

- So far, DM particles escaped detection
- Upper limits on  $d\mathcal{R}/dE_R$ translated into upper limits on  $d\sigma_T/dE_R$
- Standard strategy: set exclusion limits on SI and SD DM-nucleon interactions
- Extended strategy: set exclusion limits on the complete set of Galilean invariant DM-nucleon interactions



E. Aprile *et al.* [XENON Collaboration], Phys. Rev. Lett. **119**, no. 18, 181301 (2017)

イロト 不得 トイヨト イヨト

э

- Direct detection experiments will probe a significant fraction of the WIMP parameter space
- Priorities will be:
  - to identify optimal strategies to extract DM properties from data, assuming a WIMP signal
  - to search for an alternative to WIMPs, assuming there will be no detection

 In this talk, I'll focus on our recent contributions to the first line of research

## Extracting the DM spin from data (assuming a signal)



▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

#### Theoretical framework

- We focus on the most general set of renormalisable models preserving Lorentz and gauge symmetry, and extending the Standard Model by one DM candidate of spin ≤ 1 and one particle mediating DM-quark interactions.
  - J. B. Dent, L. M. Krauss, J. L. Newstead and S. Sabharwal, Phys. Rev. D 92, no. 6, 063515 (2015)
- Models classified in terms of WIMP and mediator spin, e.g.:

| WIMP spin | Mediator spin | $\mathcal L$ terms | leading NR operator |
|-----------|---------------|--------------------|---------------------|
| 1/2       | 0             | $h_1, \lambda_1$   | $\mathcal{O}_1$     |
| 1/2       | 0             | $h_2,\lambda_1$    | $\mathcal{O}_{10}$  |
| 1/2       | 0             | $h_1,\lambda_2$    | $\mathcal{O}_{11}$  |
| 1/2       | 0             | $h_2,\lambda_2$    | $\mathcal{O}_6$     |
| 1/2       | 1             | $h_3,\lambda_3$    | $\mathcal{O}_1$     |
| 1/2       | 1             | $h_4,\lambda_3$    | $\mathcal{O}_9$     |
| 1/2       | 1             | $h_3,\lambda_4$    | $\mathcal{O}_8$     |
| 1/2       | 1             | $h_4,\lambda_4$    | $\mathcal{O}_4$     |

#### Non-relativistic effective theory of DM-nucleon interactions (NRET)

- J. Fan, M. Reece and L. T. Wang, JCAP 1011, 042 (2010);
- A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, JCAP 1302, 004 (2013)
  - NRET is based upon two assumptions:
    - there is a separation of scales:  $|{\bf q}|/m_N \ll 1,$  where  $m_N$  is the nucleon mass
    - DM is non-relativistic:  $v/c \ll 1$
  - It follows that the Hamiltonian for DM-nucleon interactions is

$$\hat{\mathcal{H}}(\mathbf{r}) = \sum_{ au=0,1} \sum_k c_k^ au \hat{\mathcal{O}}_k(\mathbf{r}) \, t^ au$$

- $\hat{\mathcal{O}}_k(\mathbf{r})$  are Galilean invariant operators
- $t^0 = \mathbb{1}_{\text{isospin}}, t^1 = \tau_3$

$$\begin{array}{ll} \hat{\mathcal{O}}_{1} = \mathbf{1}_{\chi}\mathbf{1}_{N} & \hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_{N} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\mathbf{1}_{\chi} \\ \hat{\mathcal{O}}_{3} = i\hat{\mathbf{S}}_{N} \cdot \left(\frac{\dot{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right)\mathbf{1}_{\chi} & \hat{\mathcal{O}}_{11} = i\hat{\mathbf{S}}_{\chi} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\mathbf{1}_{N} \\ \hat{\mathcal{O}}_{4} = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} & \hat{\mathcal{O}}_{12} = \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{5} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\dot{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right)\mathbf{1}_{N} & \hat{\mathcal{O}}_{13} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp}\right)\left(\hat{\mathbf{S}}_{N} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{6} = \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right)\left(\hat{\mathbf{S}}_{N} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right) & \hat{\mathcal{O}}_{14} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right)\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{7} = \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp}\mathbf{1}_{\chi} & \hat{\mathcal{O}}_{15} = -\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right)\left[\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \cdot \frac{\dot{\mathbf{q}}}{m_{N}}\right] \\ \hat{\mathcal{O}}_{8} = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp}\mathbf{1}_{N} & \hat{\mathcal{O}}_{17} = i\frac{\dot{\mathbf{q}}}{m_{N}} \cdot S \cdot \hat{\mathbf{v}}^{\perp}\mathbf{1}_{N} \\ \hat{\mathcal{O}}_{9} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \frac{\dot{\mathbf{q}}}{m_{N}}\right) & \hat{\mathcal{O}}_{18} = i\frac{\dot{\mathbf{q}}}{m_{N}} \cdot S \cdot \hat{\mathbf{S}}_{N} \end{array}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

#### DM particle spin combining direct detection and LHC (I)

S. Baum, R. Catena, J. Conrad, K. Freese and M. B. Krauss, arXiv:1709.06051



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

#### DM particle spin combining direct detection and LHC (II)

S. Baum, R. Catena, J. Conrad, K. Freese and M. B. Krauss, arXiv:1709.06051



(日)、

э

## Compatibility regions in the $M_{\rm med} - \sigma$ plane

S. Baum, R. Catena, J. Conrad, K. Freese and M. B. Krauss, arXiv:1709.06051



## Changing assumptions

S. Baum, R. Catena, J. Conrad, K. Freese and M. B. Krauss, arXiv:1709.06051



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Summary

- We are currently developing analysis strategies to extract the DM particle spin based upon the detection of a DM signal at direct detection experiments
- I briefly mentioned two examples
  - DM spin from directional detection
  - DM spin combining direct detection and the LHC (\*)
- Scenario 1: Featureless spectrum. If a LHC mono-jet signal is detected, DM has spin 1/2 and interacts via a unique velocity-dependent operator. If not, DM interacts through canonical spin-independent interactions.
- Scenario 2: Bumpy spectrum. DM has spin 1/2 and interacts via a unique momentum-dependent operator.