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First application: the DAMA unmodulated signal
with isotropic galactic velocity distributions



Recasting the halo-independent approach as
a problem of moments can address questions
beyond the comparison of experiments.

For example:
- maximum likelihood with an infinite number of nuisance parameters

- include direct- and indirect-detection data

statistical tests of compatibility

information on distribution function itself

predictions for future experiments
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The DAMA modulation

“What does not kill me makes me stronger”
F. Nietsche, “Twilight of the Idols, or How to philosophize with a Hammer” (1888)

<———‘— DAMA/Nal (0,29 tonxyr) —
(ta}‘det mass =87.3 kg)

DAMA observes an
annual modulation with

the characteristics of a
WIMP signal

Residuals (cpd/kg/keV)

Bernabei et c;i77997;ri6w o  Time (day)

The DAMA signal
seems incompatible
with other experiments

Spin-dependent, spin-independent.
electron-WIMP, etc. interactions

WIMP—nucleon cross section [pb]

. 2
WIMP—nucleon cross section [cm~]

Standard halo model (Maxwellian
velocity distribution)

WIMP Mass [GeV/c?]



Halo-independent approach

Do not assume any particular
WIMP density or velocity distribution

One could put bounds separately for each assumed velocity distribution. But
how does one put them together? Introduce the probability of a distribution?
These questions are too hard. We follow an alternative route.



Halo-independent approach

event detector particle ,
, x(astrophysics)
rate response physics

The scattering rate per unit target mass (recoil spectrum)
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The event rate per unit target mass (actually measured)

/ (G(E ER]E dEg
\ S Recoil energy

Measured energy Effective energy response function:
probability of actually detecting an event that occurred




Halo-independent approach

particle)

detector

event)
rate | response

physics

Rescaled astrophysics factor
common to all experiments

N(Vmin) = % f(vv)

Umin

“Velocity integral”
Proxy for dark matter flux

d>v

x| (astrophysics)

“XED  ARBITRARY

Claimed signal

Minimum WIMP speed
to impart recoil energy Er

Fox, Liu,Wiener 201 | ; Gondolo, Gelmini 201 2; Del Nobile, Gelmini, Gondolo, Huh 2013-14



Halo-independent approach

Find velocity integral from one experiment and use it for another.
Fox, Liu,Weiner 201 |
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Needs unique relation between measured energy and minimum WIMP speed,
available for single-target detectors with excellent energy resolution.
For composite targets, lucky event pattern in CRESST allowed inversion.



Halo-independent approach

In general, for composite targets and finite energy resolution,
one can still find weighted averages of the velocity integral.

DAMA may be compatible with null searches for anapole and exothermic dark matter.
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Ymin [km/SI
Del Nobile, Gelmini, Gondolo, Huh 204 Scopel,Yoon 2014

Allows for any velocity and energy dependent cross section, and
indirect searches through neutrinos from the Sun/Earth.




Halo-independent approach

Alternatively, one has sampled discretized velocity distributions to find
bounds from direct and indirect experiments (neutrinos from the Sun).

Likelihood for particle-physics Bounds on cross section from direct
parameters (mock data) detection and neutrinos from the Sun

4
,’ Halo independent upper limit
(neutrino telescopes only)
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Halo independent upper limit

SHM with optimized o,
Best-fit velocity distribution
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Feldstein, Kahlhoefer 20| 4 Ibarra, Rappelt 2017



Halo-independent approach

Open questions include the statistical significance of the bounds
obtained and of the comparison of experiments.

Unbinned likelihood analysi
nbinned likefihood analysis CDMS-Si events \\_ ---- XENONIO
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Halo-independent approach
Observables are integrals of the velocity distribution.

For example,

dR
E ar 3
ventrate -~ /H(V) f(v)d’v

Vo, do
= | dE E.E
where H(V) / r G(E,ER) T

is the event rate for a monochromatic WIMP beam of velocity v.

Question: if we know some observables, can we estimate others?



The problem of moments



Chebyshev’s problem of moments

What can be said about a probability distribution if its first
N moments are known!

/f(:v) dr =1 (normalization)

/:I:f(a:) dr = [ (mean)

/ajN f(x)dx = pun Here the u; are
given numbers.



Markov’s problem of moments

What can be said about a probability distribution if
N of its generalized moments are known!?

/f(:v) dr =1 (normalization)

[ ) f(a)do =y,

Here the Ai(x) are given
/hN(x) f(z)dx =yn integrable functions, and
the y; are given numbers.



Bounds on integrals of f(x)

Bienaymé 1853, Chebyshev 1867, Markov 1884, Stieltjes 1884

Markov’s inequality

For any probability distribution f (x) defined on x > 0 with

mean u,and a > 0, o
| r@ar<?
a a

Chebyshev’s inequality

For any probability distribution f(x) with mean x and

dispersion g,and a > 0,
w+ao 1
T
7

Usually not very powerful but there are many ways to sharpen them.



Bounds on integrals of f(x)

The fundamental theorem (generalized Chebyshev inequalities)
Hoeffding 1955, Richter 1957, Mulholland&Rogers 1958, Isii 1960, Winkler 1988, Pinelis 2016

For probability distributions f(x) that satisfy the N+| moment conditions
/hi(fﬁ)f(f)dl’:yz' (1=0,1,...,N;ho(z) = 1550 = 1)

one has

in [ [ 9t) 1.2 d:c] < [ 9@ f@)dx < sup [ [ 9ta) 1.2 dw]

where the inf and the sup are over “extreme distributions” (positive sums

of Dirac delta functions)
N

N
fe(ZE):Z)\j5($—ZEj)’ Aj >0, Z)‘jhi(xj):yi’ ’h@(ajj)‘ 7 0.
=0

7=0

These inequalities are strict. They also apply for values of y; in a region.



Bounds on integrals of f(x)

Finite-dimensional analog

Linear optimization maximum

To find the maximum and minimum
of a linear function of x, y, z, ...
defined on a convex region it is
enough to compute the function at
the vertices of the region.

Example: for a polygonal region, the
maximum and minimum values are
achieved at one of the vertices.

“Extreme distributions” are analogous to vertices. The fundamental
theorem states that the maximum and minimum values of the linear
functional [ g(z) f(z) dz occur at an extreme distribution (vertex).



The halo-independent approach
as a problem of moments



The halo-independent approach
as a problem of moments

Observables are generalized moments of the velocity distribution.

For example, event rate Z—g = /H(v) f(v)d%v

We can access all the power of generalized Chebyshev inequalities and
linear optimization in the infinite-dimensional space of distributions.

The fundamental theorem (generalized Chebyshev inequalities)
Given (ranges for) N measured observables, strict upper and lower

bounds on any other observable can be found using at most N+
streams.



First application:

estimating the DAMA unmodulated signal



Signals as integrals of f(v) Gondolo, Scopel 2017

Write modulated and unmodulated signals as integrals over the same velocity
distribution. For this purpose, use velocity distribution in galactic rest frame.

flab(vat) :fgal(u> u:V+V@+V@(t)
Si(t) = /HZ(V) fiab (v, t) d°v = /Hfal(u,t) feal(u) d°u

Unmodulated signals in each energy bin (constant Fourier coefficient)

9 T
H%il(u) = T/O dt ?‘LL (u — Vo — Vg (t))

Modulation amplitudes in each energy bin (cosine Fourier coefficient)
S = [ HEL ) fn ()

Hg:}i(u) = % /0 dt coslw(t — to)] Hi(u— ve — v (t))



Profile likelihood

Gondolo, Scopel 2017

Likelihood of DAMA modulation amplitudes

Sexp 2
—9 ln£ Z ( A SeXp )

Profile the likelihood over all velocity distributions that satisfy the given
data (infinitely-many nuisance parameters)

Li(So:) = sup  L(Spy)
fgalEA(SO,i) v

where A(Sy ;) is the set of distributions that satisfy the moment constraints

So,z'Z/Hgal( ) fear(0) d’u



Profile likelihood (continued) Condolo,Scopel 2017
ondolo, >cope

Slnf ( ) SSUP (LO)

Compute the profile likelihood as an
extremization problem for So; at fixed
likelihood Lo.

likelihood function £
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Extremize Sp ; / Hgal ) feal(u ) d°
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subject to /fgal(u) du=1 /o0

/Hgal o st

m )>LO

Restrict to velocity distributions that are isotropic in galactic frame (for faster computation)



Monte-Carlo
Gondolo, Scopel 2017

Profile likelihood and likelihood
intervals for the unmodulated
signals So; in each DAMA energy
bin, obtained by Markov-Chain
Monte Carlo profiling out
isotropic velocity
distributions.
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Results
Gondolo, Scopel 2017

Halo-independent estimate of the DAMA unmodulated signal

m=10 GeV/c2
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(*isotropic in galactic rest frame)



Summary

= The halo-independent approach

- The problem of moments

- The halo-independent approach as a problem of moments
- First application: the DAMA unmodulated signal

with isotropic galactic velocity distributions

Recasting the halo-independent approach as a problem of moments
can address questions beyond the comparison of experiments.

Work continues to understand the full power of this method and to
bring it to complete fruition (e.g., include all data, statistical tests of
compatibility, information on distribution function itself, etc.).



