GAPS Hunting for Dark Matter with Cosmic-Ray Antimatter

TSUGUØ ARAMAKI, SLAC For GAPS Collaboration

February 22nd, UCLA DM 2018

ARTICLE SARCI

GYA P

NASA OJAXAOINE

n

ERAL

GEN

0

OUTLINE

- Indirect DM Search
 - Recent results from Fermi, AMS-02
- GAPS Mission
 - Why antideuterons?
 - Detection method/particle identification technique
 - Detector design
 - Recent status
 - Sensitivity and complementarity to other DM experiments
- Summary

INDIRECT DM SEARCH

- Positron: AMS-02, Fermi-LAT, PAMELA, ...
- Gamma-ray: Fermi-LAT, CTA, HESS, VARITAS...
- Neutrino: IceCube, ANTARES...
- Antiproton: AMS-02, PAMELA, GAPS
- Antideuteron : AMS-02, GAPS
- Antihelium: AMS-02, GAPS

Complementary searches with different detection methods/background models are crucial to validate

INDIRECT DM SEARCH – FERMI AND AMS-02 RESULTS SLAC

Possible DM Signatures?

- Fermi Galactic Center Excess
 - ~50GeV DM/Astrophysical objects?
 - Similar excess in Fermi dSphs?
- AMS-02 positrons/antiprotons
 - DM/pulsars/propagation uncertainty?
- AMS-02 antihelium detection?

Difficult to verify DM signatures due to

AMS02.org

AMS 2016

AMS-02

positrons

GAPS COLLABORATION

WHY ANTIDEUTERONS?

GAPS DETECTION CONCEPT

Annihilation products provide added background suppression

Concept proven with accelerator beam test Measured/verified X-ray yields with different targets Developed cascade model to predict X-ray yields

GAPS ANTIDEUTERON IDENTIFICATION TECHNIQUE

CR p, e[±] rejection: antiproton and antideuteron selection

- Select slow particles with TOF
- Simultaneous detection of annihilation products
- Antideuteron identification from antiprotons
- atomic X-rays from exotic atom
 - different energy
- pion/proton multiplicity
 - more for antideuterons
- stopping range (depth sensing)
 - antideuterons go deeper
- dE/dX energy deposit in layers
 - more for antideuterons

Background/Mimic Events ~ 0.01

SLAC

GAPS INSTRUMENT – DESIGN CONCEPT

2m

1.6m

3.6m

.6m

2m

Well-studied, widely-used Si(Li) & plastic scintillators

3.6m Si(Li) detector: 4 inch, 2.5mm thick wafer

- 10 layers, ~140 Si(Li) detectors/layer
- Segmented into 8 strips
 -> 3D particle tracking
- Energy/timing resolution: ~4 keV, ~100 ns

SLAC

- Operation temperature: -40C cooled with oscillating heat pipe (OHP)
- Dual channel electronics 20-80 keV: X-rays 0.1-50MeV: charged particles

TOF plastic scintillators: 18cm x 1.6m x 5mm

- Identify incoming charged particles
- 1m separation between inner/outer TOF
- Timing resolution: ~0.5ns, SiPM on each

Key instruments werentested/validated in the ⁹

GAPS INSTRUMENT – RECENT STATUS

We are on track for upcoming PDR later this year

GAPS can elucidate the tensions from a different

GAPS COMPLEMENTARY DM SEARCH

GAPS, SuperCDMS and LZ/XENON can complementarily investigate DM parameter space

GAPS ANTIPROTON MEASUREMENT

GAPS Can Exclusively Measure Low-Energy Antiprotons

Low-mass DM search

- SUSY LSP
 - neutralino, RH sneutrino
- LZP
 - extra dimensions
- Gravitino
 - small R-parity violation
- PBH Evaporation
 Solar modulation
 - BESS
 - 29 at E ~ 0.2 GeV
 - PAMELA
 - 7 at E ~ 0.25 GeV
 - AMS-02

E > 0.5 GeV

- **GAPS** ~ 1500
 - ~ **1500** at E < 0.25

GAPS can uniquely explorer low-mass DM, PBH affd

SCHEDULE AND SUMMARY

- GAPS antideuteron measurement is considered as backgroundfree DM search and can uniquely explorer DM parameter space.
- GAPS antideuteron measurement can elucidate the tensions between Fermi GCE/dSphs and AMS-02 antiproton measurement.
- GAPS antiproton measurement can deeply investigate low-mass
 DM, PBH and solar modulation.

