

Low-background techniques in direct dark matter searches

Grzegorz Zuzel

Institute of Physics Jagiellonian University, Cracow, Poland

Outline

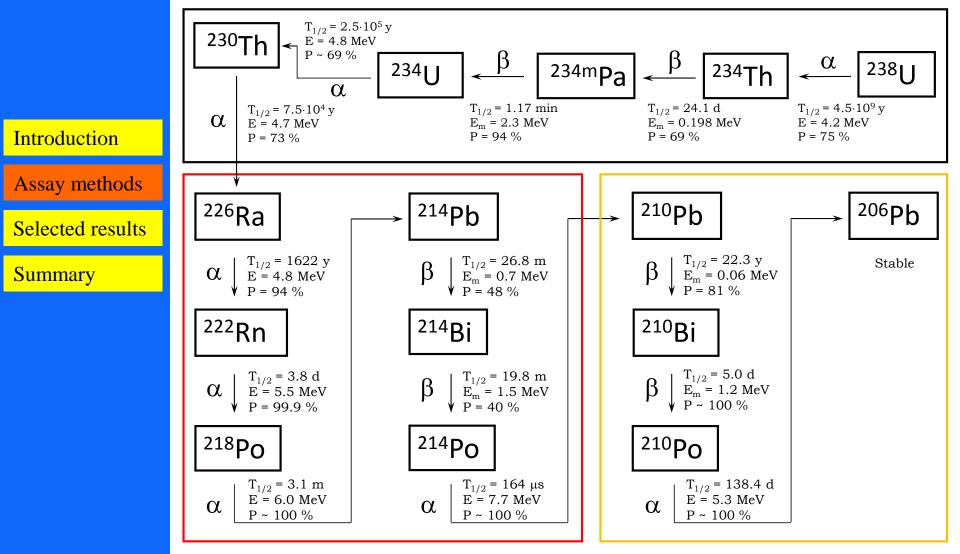
- Introduction
- Low Radioactivity Assay Techniques
- Selected results
- Summary

Introduction

- Detectors devoted to direct dark matter searches require ultra-low (zero) background
- Background sources: producing events, which can mimic the signal (e.g. radioactive decays, n, muons, detector-specific sources)
- Background reduction techniques:
 - ✓ Graded shielding: traveling inward to the center, each component is more radio-pure and it is protected from external radiation by the preceding one
 - ✓ Active (definition of FV, Čerenkov veto) and passive (buffer volume) suppression of external radiation
 - ✓ Careful selection of construction materials and detector components with respect to content of radioactive isotopes, ²²²Rn emanation and permeability
 - ✓ Preventing surface contamination
 - ✓ Application of appropriate purification (liquids, gases) and cleaning techniques

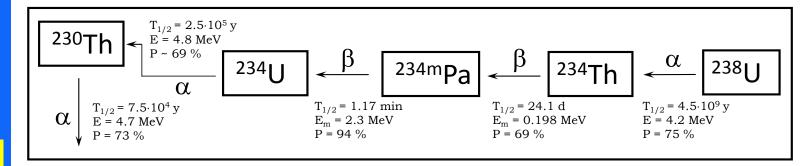
Introduction

Assay methods


Selected results

Summary

FNP) Team

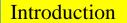

²³⁸U decay chain

²³⁸U decay chain

- Introduction
- Assay methods
- Selected results
- Summary

- Assay methods: ICP-MS / AMS / GDMS
- Inductively Coupled Plasma Mass Spectrometry supported by a proper sample preparation methodology allows for the analysis of various materials and specialty components important in ultralow background physics experiments
- Assay of materials, which can be put into liquid form (polymers, electronic components, wires/cables, metals, *etc*.)
- Extremely sensitive, fast (couple of days for a measurement), requires small amounts of sample (< 1 g)
- Commercially available instruments can reach < 0.01 ppt sensitivity for U/Th ($< 0.1 \ \mu Bq/kg)$

NIM A 775 (2015) 93

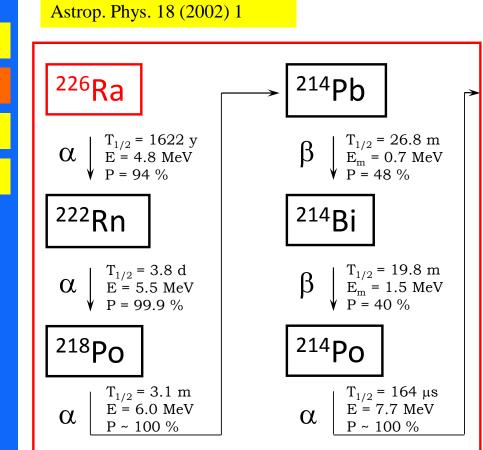


²³⁸U decay chain

Gamma-ray spectroscopy: GeMPIs (MPIK-HD)

- Sensitivity: ~10 μ Bq/kg (~1 ppt U equiv.)

Appl. Rad. Isot. 53 (2000) 191



Assay methods

Selected results

Team

Summary

High sensitivity Rn emanation

- Chambers coupled to the cryogenic Rn detector
- Integrated automatic pumping system
- Integrated automatic heating system (emanation tests up to 150 °C possible)
- Simultaneous real-time detection of emanated ²²⁰Rn and ²²²Rn
- Detection limit of $\sim 10 \mu Bq$

Appl. Rad. Isot. 53 (2000) 371 IJMP A 32 (2017) 1743004

Introduction

Assay methods

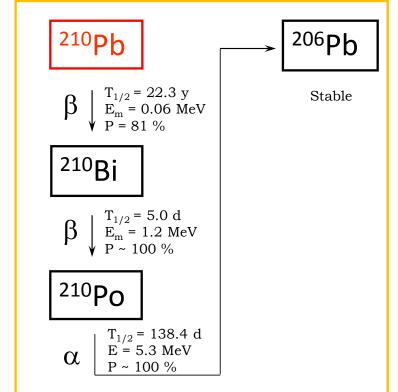
Selected results

Team

Summary

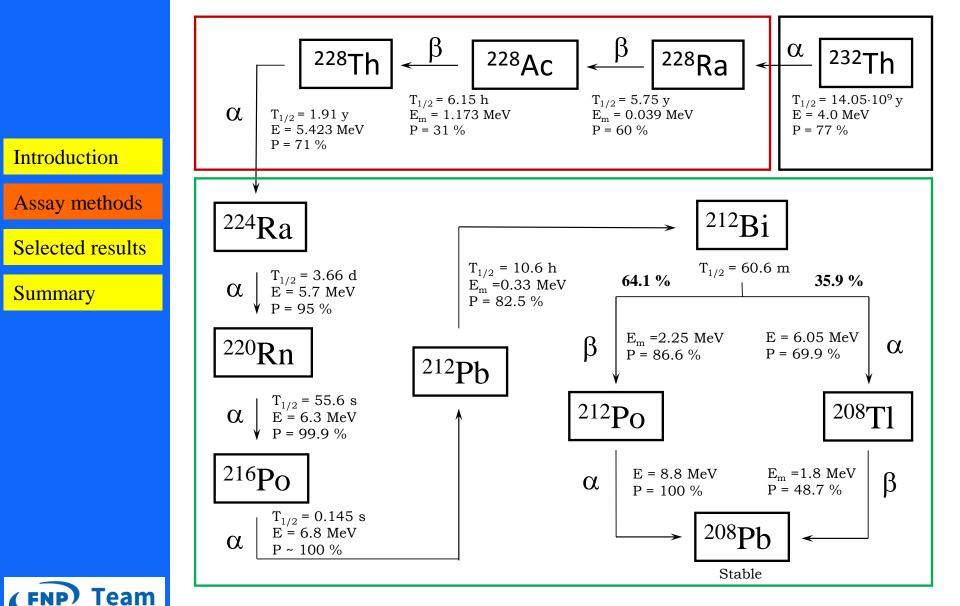
²³⁸U decay chain

Radio-chemical method


- Dissolution of a sample in acid
- Deposition of ²¹⁰Po on a (silver) disc
- Counting with an ultra-low background alpha spectrometer
- Sensitivity: ~1 mBq/kg (bulk + surface)

Direct counting of ²¹⁰Po

- Large surface low background alpha spectrometer
- Assay of bulk and surface contamination
- Sensitivity: ~50 mBq/kg (bulk) ~1 mBq/m² (surface)


A series of measurements of ²¹⁰Po in time for the same sample provides information about ²¹⁰Pb

Appl. Rad. Isot. 126 (2017) 165

²³²Th decay chain

Introduction

Assay methods

Selected results

Summary

Examples of dis-equilibrium

²³⁸U chain: BX nylon / steel for the GD cryostat

	Sample	²²⁶ Ra / ²³⁸ U equiv.	238U
	Capron B73ZP foil	220 µBq/kg / 18 ppt	~1 ppt
	Sniamid foil	16 µBq/kg / 1.3 ppt	~10 ppt
	Acroni/Slovenia, G5	$(1.0 \pm 0.6) \text{ mBq/kg}$	$(54 \pm 16) \text{ mBq/kg}$

NIM A 498 (2003) 240

NIM A 593 (2008) 448

²³²Th chain: steel for the GD cryostat

Sample	²²⁸ Ra [mBq/kg]	²²⁸ Th [mBq/kg]	
Acroni/Slovenia, G4	< 3	5.1 ± 0.5	
Acroni/Slovenia, G7	1.9 ± 1.0	5.2 ± 0.5	

Gamma-ray spectroscopy

NIM A 593 (2008) 448

Rn emanation studies

Sample		²²² Rn	²²⁰ Rn	
	PMT Cu window	< 90 µBq/piece	< 80 µBq/piece	
Introduction	TPB coated PMT Cu window	$(140 \pm 70) \mu Bq/piece$	< 80 µBq/piece	
Assay methods	PMT R11410_10	< 80 µBq/piece	$(330 \pm 140) \mu\text{Bq/piece}$	
Selected results	Kapton-Cu cable	(37 ± 13) μBq/m	(38 ± 16) μBq/m	
Summary	Feedthroughs	< 30 µBq/piece	< 40 µBq/piece	
	DS-50 cryostat	$(140 \pm 40) \mu\text{Bq}$		
	DS-50 TPC	(1350 ± 400) μBq		
	HP Ti sponge	< 0.15 mBq/kg	< 0.10 mBq/kg	
	SAES Getter pellets	$(2.7 \pm 0.7) \text{ mBq/kg}$	$(3.2 \pm 0.8) \text{ mBq/kg}$	

All measurements performed at room temperature

Assay of ²¹⁰Pb-²¹⁰Po sub-chain

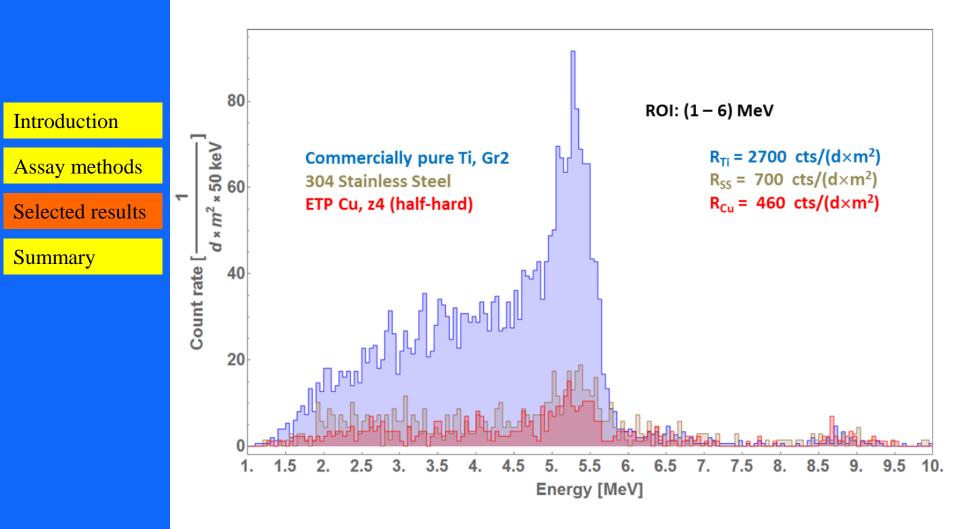
- Only ²¹⁰Po studied
- Low background, large surface alpha spectrometer
- Sample size: 43×43 cm
- Possibility to determine bulk and surface contamination

UCLA Dark Matter 2018, February 21-23, 2018 / LA, USA

Introduction

Assay methods

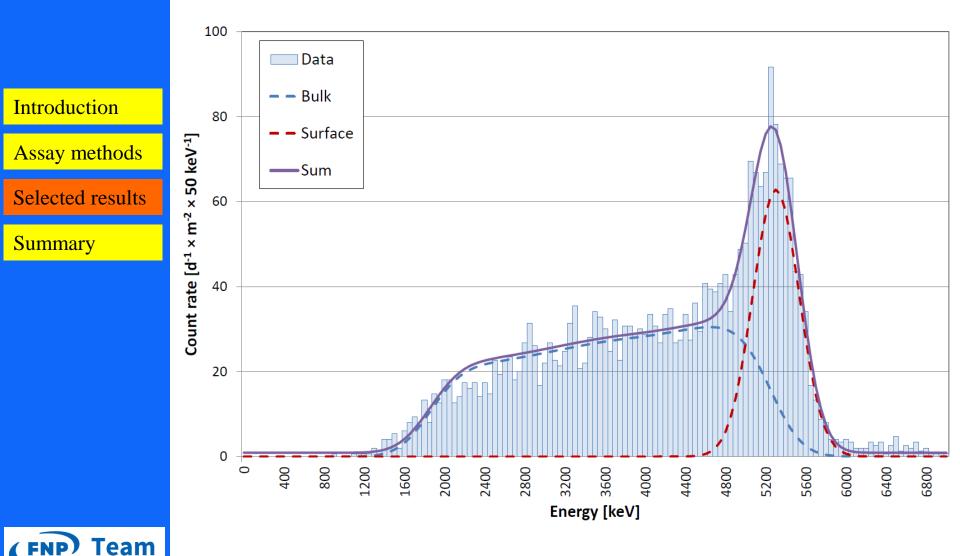
Selected results


Team

Summary

FN

Assay of ²¹⁰Pb-²¹⁰Po sub-chain



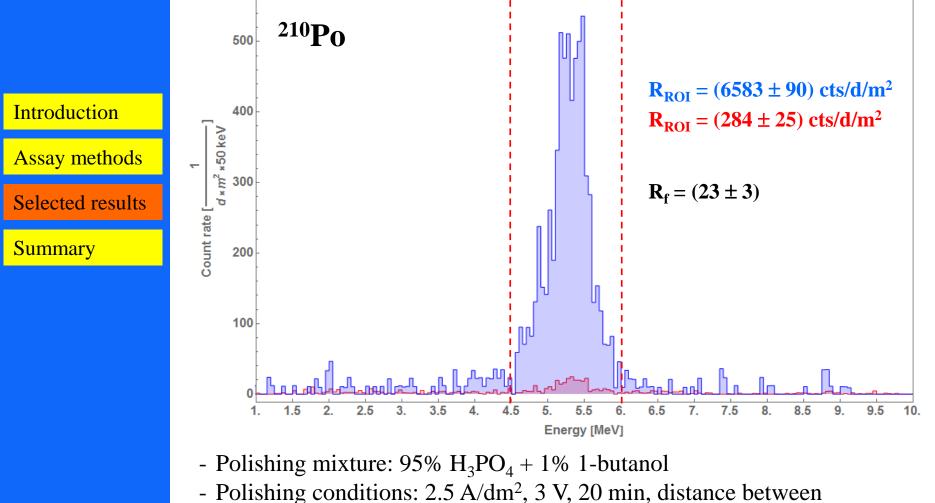
Assay of commercial Ti

Spectrum of commercial high purity Ti (Gr2) sample

Team

(FNP

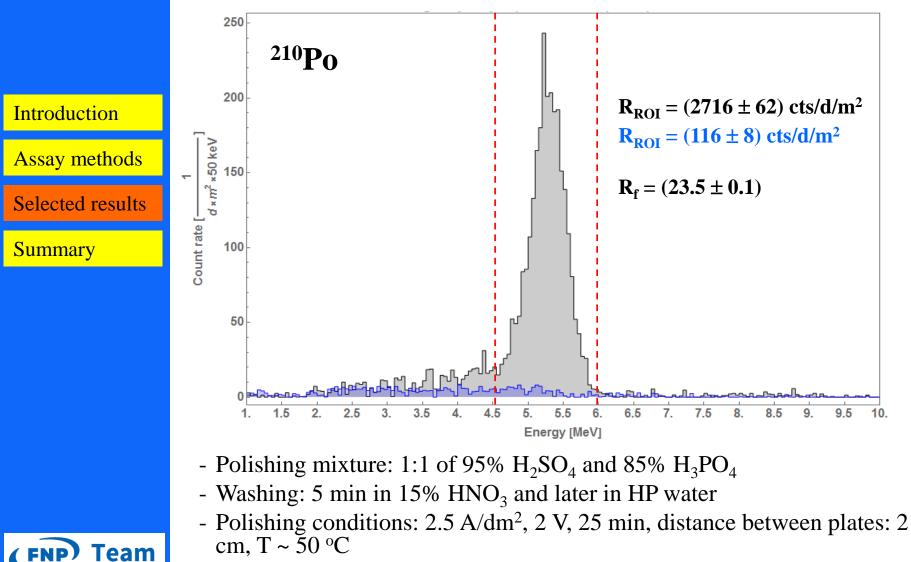
²¹⁰Po in various samples


	Material	Bulk ²¹⁰ Po [mBq/kg]	Surface ²¹⁰ Po [mBq/kg]	Remarks
Introduction	OF Copper	54	≤ 3	z4 (half hard)
Assay methods	ETP Copper	75	≤ 3	z4 (half hard)
Selected results Summary	"Old" ETP Copper	280	170	z4 (half hard)
	Stainless Steel	80	≤ 3	Type 304
	Titanium	1500	68	GR2
	Teflon	≤ 46	—	High purity, ATP

Appl. Rad. Isot. 126 (2017) 165

Геат

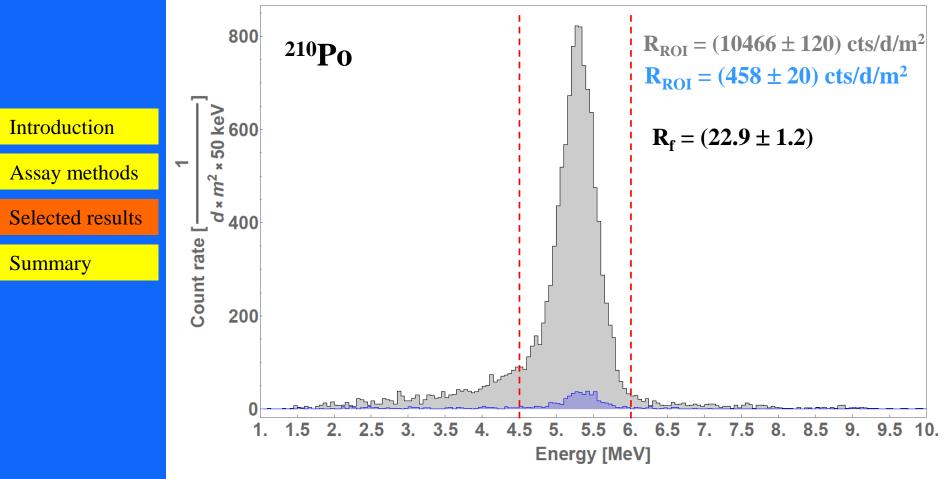
Electro-polishing of copper



plates: 2 cm, room temperature

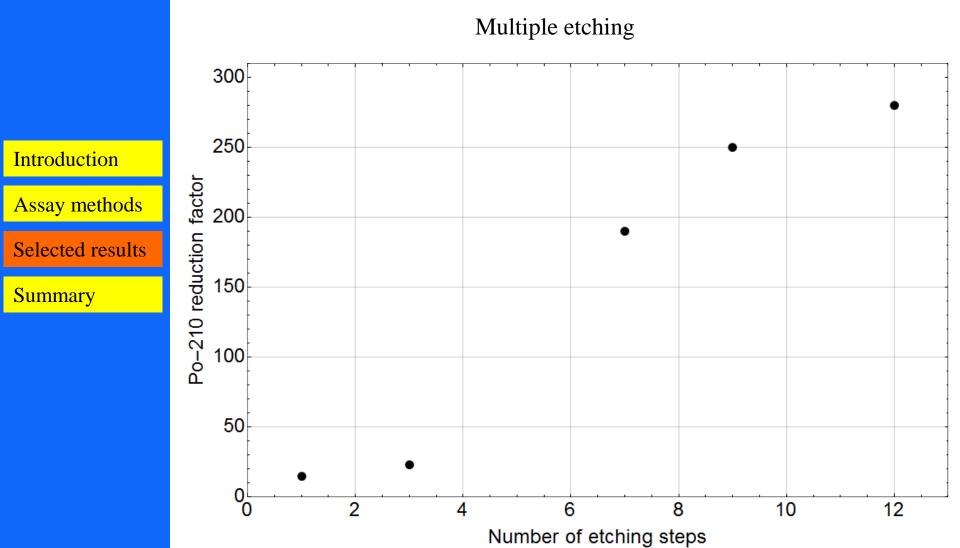
Electro-polishing of stainless steel

SS 1.4301 (304): sheet No. 2, 43 cm x 43 cm x 0.1 cm,



'eam

Etching of copper


"Dynamic" etching, 3 single runs

- Etching procedure: 3 x 1 min wash with a mixture of 1% $H_2SO_4 + 3\% H_2O_2$
- Passivation with 1% citric acid at the end
- Washing in high-purity deionized water (18 M Ω ×cm)

Etching of copper

FNP Team

DARKSIDE ²²²**Rn-free clean rooms**

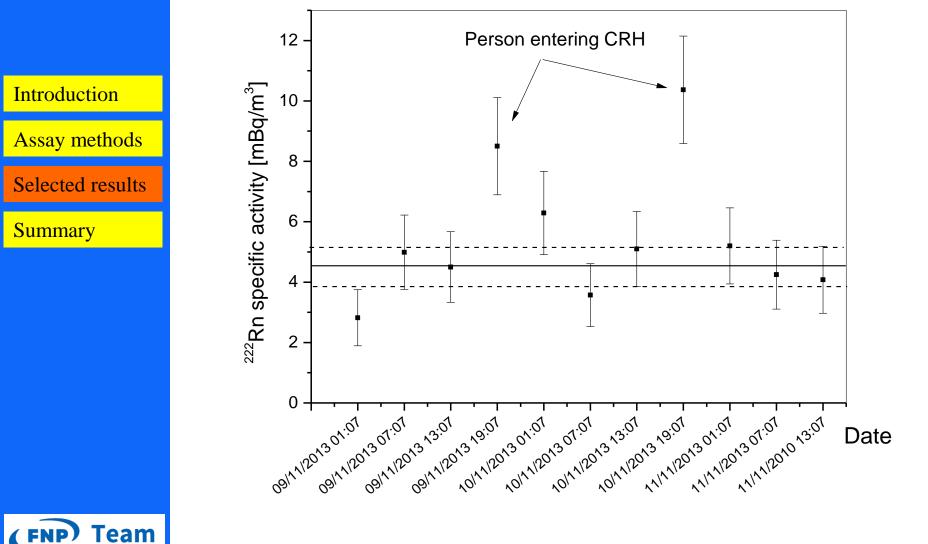
Avoiding deposition of long-lived ²²²Rn daughters

Introduction

Assay methods

Selected results

Summary


Typical radon in hall C air ~50 Bq/m³ Cleanroom radon levels 5 – 50 mBq/m³

- Class 10 100
- Radon daughters plating out on surfaces of the detector may cause dangerous alphainduced nuclear recoils
- Dedicated scrubbing system reducing ²²²Rn concentration in the air down to ~1 mBq/m³ has been implemented
- DARKSIDE clean rooms are supplied with the ²²²Rn-free air
- ²²²Rn content in the clean rooms is monitored online by a dedicated detector

DARKSIDE ²²²**Rn-free clean rooms**

Introduction

Assay methods

Selected results

Summary

Summary

- Ultra-low (ultimately zero) background is required in direct dark matter searches
- Proper estimation of background from various sources (e.g. n from α -n reactions) requires assay of all U/Th sub-chains
- MS techniques for the assay of the long-lived U/Th isotopes sensitive down to 0.01 ppt (0.1 μ Bq/kg)
- γ -ray spectrometers for determination of Ra isotopes sensitive down to 10 μ Bq/kg (10 ppt equiv.). Better sensitivity may be achieved in some cases by performing Rn emanation studies
- Presently, the bottom part of the ²³⁸U chain is accessible only at some tens of mBq/kg (~1 ppb equiv.)
- Determination of Ra and ²¹⁰Pb at lower specific activities needed (e.g. ²¹⁰Pb in PTFE down to at least 1 mBq/kg) \rightarrow new developments