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SuperCDMS Soudan

e Located in Soudan
Underground Lab, =~ % mile
GO end iais underground with 2090 M.W.E.

of overburden

o Utilizes the same shielding and
cryostat from CDMS-II
experiment

o Collected about 2500 kg-days
of raw exposure over
experiment lifetime

e Data taking ended in 2015,

collaboration shifting focus to
SNOLAB
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HV Biasing

— Electron propagation

— Luke phonons

Primary recoil phonons

Hole propagation

e Phonons are created from charges passing through a crystal through
Neganov-Trofimov-Luke effect

e The contribution to total phonon energy goes as N eV} :
proportional to bias voltage V,,

e High bias voltage allows us to measure small amount of charges
through phonon signal (CDMSlite mode/HV)

e Trade-off: no separate measurement of primary phonon signal,
sacrifices ER/NR discrimination
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Low mass dark matter Battaglieri et al. arXiv:1707.04591
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e Need new ideas and approaches to 0 T “a

probe these low masses - - -
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Dark photon absorption with CDMSlite data
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Signal is mono-energetic electron with E = my
Search strategy is a bump-hunt in our spectrum!
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Dark photons - Hochberg, Lin and Zurek Phys. Rev. D 95, 023013
Hidden photon dark matter
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e Sensitivity extends down to band gap (Ge .7 eV, Si 1.1 eV)

e We can expect to cover a large amount of parameter space at
SNOLAB
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events/kg/day/keV

Bremsstrahlung - Kouvaris and

v

f

= Ge photon spectrum

Si photon spectrum
Ge nuclear recoil

° 8inuclear recoil

-
Nuclear recoil or photon energy (keV)

1 GeV WIMP
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Pradler Phys. Rev. Lett. 118, 031803

X~

e Recoiling nucleus can emit a
photon as it slows down in
material

e Energy of this photon can
extend to higher energies than
NR

e Photon acts as probe to low
mass WIMP scattering below
detector threshold
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Single e/h device - Romani et al.
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Appl. Phys. Lett. 112, 043501
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e Single e/h-pair sensitivity has been recently demonstrated in 0.93g

Si crystal

e Single e/h-pair resolution goal of SuperCDMS SNOLAB

e Such devices will have sensitivity to a variety of sub-GeV DM
models with ~g*d exposures
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DM-electron scattering - Essig et al. JHEP 1605 (2016) 046
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e Sensitivity driven by thresholds

e Search requires good knowledge

of electronic structure of target
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Galactic axions
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e Uncertainty in photo-electric cross section at low energies limits
search
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Summary
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SuperCDMS Soudan WIMP searches are nearly complete see 8. Loer's talk

Theorists have provided us with many new channels to explore

Current CDMSlite data can be used to search for these signals

Future is looking equally bright with new technological achievements
and the planned SuperCDMS SNOLAB experiment ! seeB. Loer's talk
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Backup

Backup Slides
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SuperCDMS collaboration
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interleaved Z-sensitive lonization and Phonon (iZIP)
Detectors

phonon sensors (0V) ~J=
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Detector array: 15 Ge iZIP detectors (0.6 kg each) opperating
around 50 mK

4 phonon and 2 charge channels on each detector face

Phonon channels are grounded, charge channels are biased at + 2 V

Field configuration causes events near surface to have charge
collection localized to one side
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Expected Event Number per Unit E
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Yellin Optimal Interval

Maximum Gap
x = Maximum x_
i

i1
x=\ dN
dE

Conceptually similar to the optimal gap method except that it allows for
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