

Results from the EDELWEISS-III Dark Matter search, Prospects for EDELWEISS-LT and beyond

UCLA Dark Matter 2018 Los Angeles

Bernhard Siebenborn

www.kit.edu

WIMP search strategy

EDELWEISS collaboration

EDELWEISS-III FID800 detectors

Surface event rejection and gamma rejection

- Surface event rejection (²¹⁰Pb+²¹⁰Bi β , ²¹⁰Po α , ²⁰⁶Pb recoils): < 4 x 10⁻⁵ JLTP(2014)176:870
- > γ rejection factor: < 5.6 x 10⁻⁶

²¹⁰Pb source

Improved to $< 2.5 \times 10^{-6}$ with additional detectors + statistics JINST 12 (2017) P08010

 $^{133}\text{Ba}\ \gamma$ calibration

JLTP(2012)167:1056

Nuclear recoil calibration - event discrimination

- Clear event-by-event separation
 down to 5 keV energy (nuclear recoils)
- Response to nuclear recoils calibrated down to the analysis threshold for lowmass WIMP searches (1 keV_{ee} heat = 2.5 keV nuclear rec.)

EDELWEISS-III 2014-2015 science run

161 days of physics data with 24 FIDs: >3000 kgd total exposure

Low ER bkg: 19 FIDs used in first measurement of cosmogenic production of ³H in Ge S. Scorza et al., Astropart. Phys.91(2017)51 10 Low Threshold Ge Κ Selection Counts/keV/kg/day = dru Zn 1 Fe 10 Mn 5 10 **EDELWEISS** Single hits <0.1dru Zn Mn Multiple hits /5 10 5 10 20 50 15 25 30 35 45 Energy (keV) 8 lowest threshold FIDs used for low-mass WIMP search

Low mass WIMP search with likelihood analysis

Low mass WIMP search with likelihood analysis

Low mass WIMP search with likelihood analysis

First results of EDELWEISS-III phase

Improvement by x 20-150 between 7 and 10 GeV wrt EDELWEISS-II

Lessons learned:

- Limited by heat-only bkd: identification and rejection using the $\sigma = 230 \text{ eV}$ resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low threshold

- Neganov-Luke operation \rightarrow V_{bias} = 8V \rightarrow 100V achieved
 - Improved heat sensors $\rightarrow \sigma_{\text{heat}} = 500 \text{eV} \rightarrow 100 \text{eV}$ achieved with 200g detector

HEMT transistor read out $\rightarrow \sigma_{ion} = 200 \text{eV} \rightarrow 100 \text{eV}$

"Heat only" events \rightarrow x100 reduction

Lower threshold by increased voltage

Confirmation of NL-mode and amplification

Detector R&D: Thermal model & heat sensor

Better understanding of heat signal

- Thermal modeling of signal, \geq verified with dedicated R&D
- \succ Identification of sensitivity to ballistic phonons
- Identification of parasitic heat capacity \geq

- Sensitivity of 200 nV/keV
 - (x6 wrt present FIDs) \succ achieved on 250 g test detectors

0.1

0.2

Time [S]

0.3

0.4

0 5

J. Billard et al., JLTP(2016)184:299

Detector R&D: HEMT read out

switch $JFET \rightarrow HEMT$ detector dc gate follower bias control bias bias Reduced intrinsic noise feedback capacitor Lower heat load HEMT detector HEMT switch bias resistor Operates at 4K stage source follower \rightarrow shorter cabling -O output coupling detector \mathbf{A} open loop capacitor **Reduced capacitance** amplifier **Better SNR** 600 600 Successful HEMT amplifier ²⁴¹Am calibration Baseline 500 500 resolution with sub-100 eV_{RMS} 400 400 Counts Counts 91 eV_{RMS} 300 300 ionization resolution 200 200 100 100 A. Phipps et al., JLTP(2016)184:505 collaboration between SuperCDMS and 0 0 -0.6 -0.3 0.3 20 40 60 0 0.6 **EDELWEISS** 0 Pulse Amplitude (keV_{ee}) Pulse Amplitude (keV_{ee})

Detector R&D: reducing heat only events

- Signals on both NTDs, but no ionization signal
- Many studied hypotheses, none conclusive so far: noise, cryogenics, stress from detector suspension, gluing, natural radioactivity...
- New detector configuration being tested to study these hypotheses
 - "deported NTD", glued on separate sapphire wafer
 - Photo-lithographed high-impedance NbSi TES, sensitive to athermal phonons
- Dominant at low energy, but sufficiently reproducible for analysis of present 100V data

EDELWEISS-LT sensitivity

Potential EDELWEISS-LT technology

EDELWEISS-LT sensitivity

Search for Light Dark Matter with DELight

Cooperation of University of Heidelberg and KIT Combining HPGe crystal with vacuum electrode and metallic magnetic calorimeter

EDELWEISS Dark Matter search

23 Bernhard Siebenborn

Conclusions

- Factor 20 to 150 improvement wrt EDELWEISS-II phase
- Present threshold <0.1keV_{ee}
- Objective: operate 4 detectors at 100V
 - > 10⁻⁴¹cm² sensitivity at low mass
- Data already recorded at 100V
- Analysis of HV data under way

Karlsruhe Institute of Technology

Backups

With projections of other experiment...

EDELWEISS proj. for different voltages

- Heat signal boosted by Luke effect:
 - ~Joule heating, factor [1+V_{bias}/3]
- Loss of ionization-based bkg discrimination:
 - method benefits low-mass searches only
 - 10⁻⁴¹ cm² with 500 kgd and current bkgs
- 100 V bias already achieved
- Observe nuclear recoils down to ~0.1 keV_{ee}

EDELWEISS-LT sensitivity

EDELWEISS-LT sensitivity

