Dark matter candidates

Kallia Petraki

Sorbonne Université, LPTHE, Paris and Nikhef, Amsterdam

Dark Matter Conference, UCLA February 2018

Dark matter properties

- Stable or very long-lived •
- Dark •
- Produced at the observed density in the early • universe
- Compatible with existing experimental • constraints (colliders, direct detection, indirect detection)
- DM is not a known particle! Consistent with observed galactic structure J. Bullock's talk •
 - Not hot at the onset of gravitational collapse
 - Cold or warm?
 - Collisionless or self-interacting?

The Socratic moment ἕν οἶδα ὅτι οὐδὲν οἶδα

We know that we don't know.

But we also know that we would like to know!

Socrates by Leonidas Drosis, Athens - Academy of Athens. Image from Wikipedia.

Interaction with the SM					
Portal operators $\epsilon F^{\mu\nu}_{\mu\nu}F_{\mu\nu\nu}$	SM interactions	Heavy mediators			
$(\mu \phi + \lambda \phi^2) H ^2$	WIMPs	EFTs			
yLHN		[Tim Tait's talk]			

Interaction with the SM					
Portal operators $\epsilon F_{_{Y}}^{\mu u}F_{_{D}\mu u}$	SM interactions	Heavy mediators			
$(\mu \phi + \lambda \phi^2) H ^2$	WIMPs	EFTS			
ylhn					
Interaction type					
Long-range	Contact type				
Self-interacting DM TeV-scale WIMPs		EFTs EW-scale WIMPs			

Interaction with the SM							
Portal op	erators	SM interactions	Heavy	mediators			
$\epsilon F_{_Y}^{\mu u} F \ (\mu\phi+\lambda\phi\ yLH$	$(\frac{1}{D}\mu u)$ $(D^2) H ^2$ (N)	WIMPs	E [Tim	FTS Tait's talk]			
Interaction type							
Long-range Self-interacting DM TeV-scale WIMPs			Contact type EFTs EW-scale WIMPs				
Production mechanism							
Scalar ondensates	Collapse of density perturbations	Freeze-in	Asymmetric freeze-out	Symmetric freeze-out			
Q-balls Axions	Primordial black holes [Anne Green's talk]	Sterile neutrinos [K. Abazajian's talk] Gravitinos	Hidden sector models, e.g. dark U(1), dark QCD	WIMPs Heavy meds Light meds 7			

С

High-energy motivation

- Supersymmetry: WIMPs, Q-balls
- Neutrino masses:
 Sterile neutrinos
- Strong-CP problem: Axions

Observational motivation

- Neutrino masses:
 Sterile neutrinos
- DM density / BAU: Asymmetric DM
- Galactic structure: Self-interacting DM, warm DM
- Astrophysical anomalies:
 WIMP DM, sterile neutrinos, hidden sector models

In the following

I will discuss in a bit more detail

- WIMPs
- Self-interacting DM
- Asymmetric DM

with emphasis on long-range effects

See dedicated talks on

- Primordial black holes [Anne Green]
- Axions [Peter Graham]
- Sterile neutrinos [Kevork Abazajian]

WIMP dark matter

WIMP dark matter Motivation

 New particles coupled to the Weak interactions of the SM are expected in theories that address the EW hierarchy problem.
 Caveat: Not all WIMP scenarios

address the hierarchy problem.

• Weak-scale cross-sections can yield the observed DM density via thermal freeze-out.

• We know that the Weak interactions exist!

WIMP dark matter Popular candidates

- Neutralino in SUSY models
 - Constrained MSSM rather constrained
 - Co-annihilation scenarios, for near mass-degenerate LSP-NLSP
 - ◆ Degenerate spectrum → soft jets → evade LHC constraints
 - Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP.
 - \Rightarrow DM density determined by "effective" Boltzmann equation for

Bound-state formation and relic density Dark U(1) model

Bound-state formation and relic density Dark U(1) model

WIMP dark matter

Gluon-mediated bound states in co-annihilation scenarios

WIMP dark matter

Gluon-mediated bound states in co-annihilation scenarios

MSSM with near-degenerate NLSP-LSP

Keung, Low, Zhang, 1703.02977; see also Ellis, Luo, Olive, 1503.07142

Bino-Sbottom coannihilation Bino-Stop coannihilation CMS Bound states CMS **Bound** states 50 40 Sommerfeld 2b+MET Moriond17 Sommerfeld Born approx. 40 Born approx. 30 $M_{\widetilde{b}}^{\sim}-M_{\widetilde{\chi}}^{\sim}$ (GeV) $M_{\widetilde{t}}^{\sim}-M_{\widetilde{\chi}}^{\sim}$ (GeV) 30 CMS 20 Moriond17 20 below below *v*-floor v-floor 10 10 ATLAS LUX monoiet 0 0 500 1000 2000 5000 Ž00 500 1000 2000 5000 $M_{\tilde{v}}$ (GeV) $M_{\tilde{v}}$ (GeV)

10

WIMP dark matter Higgs enhancement in co-annihilation scenarios

[Harz and KP, arXiv:1711.03552]

WIMP dark matter Implications of long-range effects in co-annihilation scenarios

- Alter the interpretation of experimental results
- Increase mass gap → improve detection prospects with multi-/mono-jet searches.
- DM can be heavier than anticipated → probe multi-TeV regime with indirect detection

Some caution:

Computations are new, need to be checked and refined results presented may change!

WIMP dark matter Popular candidates

• Minimal DM [Cirelli et al, 2005...]

Neutral component of a pure $SU(2)_{L}$ multiplet.

Multiplicity & spin chosen to ensure stability.

Mass determined by observed DM density from thermal freeze-out

> Too heavy for LHC. Too weakly coupled (box diagram) and too heavy for direct detection.

resonances imply sensitivity to higher-order corrections & other radiative transitions

Constraints from diffuse Fermi data

Burkert profile, including background

Self-interacting dark matter

Self-interacting dark matter

Plausible solution to the apparent discrepancies between predictions of collisionless cold DM and observations [Spergel, Steinhardt (2000)]

Cross-section needed to affect galactic structure $\sigma_{\rm self-scatt}/m_{\rm DM} \sim {\rm barn/GeV} \sim {\rm cm}^2/{\rm g}$ [arge!

at dwarf-galaxy scales, $v_{DM} \sim 20$ km/s.

- Upper limit from Clusters is of the same order, at $v_{DM} \sim 1000$ km/s.
- No tension between the two, if $\sigma_{\text{self-scatt}}$ decreases with increasing v_{DM} • \Rightarrow Light mediators, long-range interactions! e.g. massless mediator: Rutherford scattering $\sigma_{self-scatt} \sim 1/v^4$.

A dark U(1) sector

 ${
m Dark} ~{
m photon}~{
m decay}~~V_{_D}
ightarrow f^+_{_{
m SM}} f^-_{_{
m SM}}$

A dark U(1) sector Constraints

Cirelli, Panci, KP, Sala, Taoso, 1612.07295; (see also Bringmann+ 1612.00845)

Dark photon masses sub-eV < m_{V_D} < GeV, excluded !

Self-interacting dark matter

 Strong constraints on minimal SIDM models from the combination of CMB & indirect detection, direct detection and cosmological considerations

[Constraints on light scalar mediators: Kahlhoefer+ 1704.02149]

- Viable SIDM scenarios
 - Entirely massless mediators
 - More complex sectors with symmetric DM
 - Asymmetric dark matter

[e.g. pure non-Abelian gauge theory Boddy, Feng, Kaplinghat, Tait (2014)]

Asymmetric dark matter

Asymmetric dark matter Motivation

Reviews: KP, Volkas, 1305.4939 Zurek, 1308.0338

• Similarity of dark and ordinary matter densities suggests a common origin.

Proposal: DM density due to a excess of particles over antiparticles related dynamically to the BAU in the early universe and conserved separately today.

 Very suitable host of self-interacting dark matter: No upper limit on the annihilation cross-section → allows for large couplings to light mediators.
 Dark and ordinary asymmetries need not be related → ADM may have a wide range of masses.

Asymmetric and self-interacting dark matter

DM coupled to light mediators The effect of bound states

- Symmetric DM → unstable bound states
 Formation + decay = extra annihilation channel
 - Relic abundance
 - Indirect detection
- Asymmetric DM → stable bound states
 - Kinetic decoupling of DM from radiation, in the early universe
 - DM self-scattering in halos (screening)
 - Indirect detection signals (radiative level transitions)
 - Direct detection signals (screening, inelastic scattering)

Asymmetric DM coupled to light mediators

• Dark gauge U(1) sector

Gauge invariance implies at least two asymmetric dark species, oppositely charged: dark protons & dark electrons \rightarrow dark atoms

Same conclusion if dark U(1) mildly broken and dark photon light enough to yield SIDM.

- Non-Abelian gauge theory + fermions
 Dark nucleons & nuclei
- Scalar mediator

Attractive interaction between particles; multi-particle bound states may form.

[Kaplan+ 2009; KP, Trodden, Volkas 2011 von Harling, KP, Volkas 2012 Cyr-Racine, Sigurdson 2013 Cline+ 2014 KP, Pearce, Kusenko 2014 Choquette, Cline 2015]

[KP, Pearce, Kusenko 2014]

[Detmold, McCullough, Pochinsky 2014]

[Wise, Zhang 2014]

Asymmetric DM coupled to light mediators

• Dark gauge U(1) sector

Gauge invariance implies at least two asymmetric dark species, oppositely charged: dark protons & dark electrons → dark atoms

Same conclusion if dark U(1) mildly broken are dark photon light enough to yield SIDM.

- Non-Abelian gauge theory + fermions
 Dark nucleons & nuclei Multicomponent DM is
- Scalar mediator
 Attractive interaction
 Multi-particle bound states may form.

[Kaplan+ 2009; KP, Trodden, Volkas 2011 von Harling, KP, Volkas 2012 Cyr-Racine, Sigurdson 2013 Cline+ 2014 KP, Pearce, Kusenko 2014 Choquette, Cline 2015

[KP, Pearce, Kusenko 2014]

[Detmold, McCullough, Pochinsky 2014]

Self-interacting asymmetric DM Indirect detection: U(1) sector + kinetic mixing

• Annihilations of residual symmetric component,

Rate suppressed by asymmetry, but enhanced by Sommerfeld effect due to light dark photon.

$$p_{_D}+ar{p}_{_D} o \gamma_{_D}+\gamma_{_D} \ \gamma_{_D} o f^+_{_{
m SM}}f^-_{_{
m SM}}$$

Rate significant for antiparticle-to-particle ratio as low as $10^{-3} - 10^{-4}$. Caveat: Formation of dark atoms may deplete available p_D and suppress annihilation signals.

[Baldes, KP 1703.00478, Baldes, Cirelli, Panci, KP, Sala, Taoso 1712.07489]

• Radiative level transitions, e.g. dark atom formation from residual ionized component $p_D + e_D \rightarrow H_D + \gamma_D$ [Pearce KP Petraki, 1502.017

$$\gamma_{\scriptscriptstyle D} o f^+_{\scriptscriptstyle {
m SM}} f^-_{\scriptscriptstyle {
m SM}}$$

[Pearce, KP, Petraki, 1502.01755

For other models: arXiv:1303.7294; arXiv:1404.3729; arXiv:1406.2276] (A)symmetric DM coupled to a dark photon: annihilation constraints

$$r_{\infty} \equiv rac{n_{ar{X}}}{n_X} igg|_{t o \infty}$$

Conclusion

Dynamics of dark matter can be quite complex, and there are many more frontiers to explore!

- Multicomponent self-interacting DM effect on galactic structure
- Indirect detection signals from radiative level transitions of symmetric and asymmetric DM
- Signatures in direct detection experiments