Indirect Dark Matter searches with charged cosmic rays and sub-GeV photons

UCLA DM, Los Angeles 21st Feb 2018

Christoph Weniger University of Amsterdam

Different searches, different challenges

Background modeling complexity

of

Propagation of messengers from DM

Differential emissivity of DM annihilation products

$$\frac{d^3 N_X}{dV dt dE} = \frac{\langle \sigma v \rangle \rho_{\rm DM}^2}{2m_{\rm DM}^2} \frac{dN_X}{dE}$$

Charged particles

Diffuse propagation

 $r_g \sim 3.3 \times 10^9 \mathrm{m} \cdot E_{1 \mathrm{GeV}}$

• Effective energy losses

Photons & neutrinos

Follow geodesicsNegligible energy losses

Diffusion-reacceleration model for CR transport

[see e.g. Evoli et al. (2012) and refs therein; Lavalle & Salati (2012); Strong, Moskalenko and Ptuskin (2007)]

Instrumental panorama – Charged cosmic rays

- GeV TeV: AMS-02 higher statistics, more analyses
- TeV PeV: Various new satellite experiments will significantly improve statistics
- sub-GeV: GAPS

The CR "positron excess"

Status

- Excess above generic secondary expectations (e.g. Delahaye+ '10, Kappl & Reinert '16)
- Explaining 100% of the excess with DM is largely excluded (nothing in gamma, CMB, pbar etc) (e.g. Papucci & Strumia '10, Cirelli+ '10, Ibarra+ '13, Slatyer '15)
- Pulsar origin is possible, but also, e.g., microquasars, SNRs (secondary production in primary sources), dark matter, ...

Do pulsars contribute to the positron excess?

HAWC observations of Geminga and PSR B0656+14 (Monogem)

- Observations of compact TeV emission halo → extremely low diffusion coefficient (x100 times lower than from B/C) → Monogem/Geminga do not contribute to positron excess
- But: last step relies on adopting low diffusion coefficient for entire (local) ISM, which seems to be in conflict with general observation of ~10 TeV electrons (Hooper & Linden 17, see also Lopez-Coto & Giacinti 17)

No spectral features in positron flux

sub-GeV electrons from Voyager-1

- Voyager 1 crossed heliopause 2012
- Measured electron+positron spectrum unaffected by solar modulation
- \rightarrow Limits on MeV DM annihilation (for p-wave annihilation stronger than CMB)

Boudau+17

Positrons + electrons with DAMPE

- Spectral break measured by HESS clearly confirmed
- A suggestive peak at 1.4 TeV (~3 papers/week)
- Energy resolution is better than 1.2% @ > 100 GeV

Interpretations of DAMPE result

Interpretations of the 1.4 TeV feature

- Statistical fluctuation
- Cold, ultra-relativistic e+e- pulsar wind
- DM annihilation into monoenergetic e+epairs. This requires local (< 1 kpc) DM clump to switch off effects of cooling which would distort spectrum. Very small probability that such a clump is there (VL).

Interpretations spectral cutoff

- Dark matter annihilation (TeV masses, the usual very large cross-sections)
- Maximum acceleration limits of sources

The "grammage" matters

Two sources for cosmic rays

ISM

CR

Primary cosmic rays from supernova remnants (likely)

Secondary cosmic rays from spallation etc

Diffusion in a box

Input: Boron/Carbon ration Output: Secondary antiprotons

$$n_B \sim n_C \sigma(C \to B) \cdot G_{\text{total}} \Rightarrow G_{\text{total}}$$
$$n_{\bar{p}} \sim n_p \sigma(p \to \bar{p}) \cdot G_{\text{total}} \Rightarrow n_{\bar{p}}$$

Leaky box & spectral indices

Diffusion and escape:

$$\frac{dN}{dt} = \dot{Q} - \frac{N}{\tau_p}$$

Diffusion distance

$$\langle x \rangle \simeq \sqrt{6D\tau} \sim L$$

L: Extend of diffusion region

Implied escape time r^2

$$\tau_p \sim \frac{L^-}{6D}$$

Spectrum of primaries:

 $\dot{Q} \propto \mathcal{R}^{-\gamma}$

Source spectrum

 $\mathscr{R} = \mathbf{p} c/Z e$ is rigidity

 $D \propto D_0 \mathcal{R}^\delta$

Diffusion parameter

Steady state solution

Spectrum of secondaries:

$$\dot{Q}_{\rm sec} \propto N_{\rm prim}/L$$

$$N_{
m sec} \propto rac{L^3}{D_0^2} \mathcal{R}^{-\gamma-2\delta}$$

$$\frac{N_{\rm sec}}{N_{\rm prim}} \propto \frac{L}{D_0} \mathcal{R}^{-\delta}$$

Consequences

Secondary-to-primary ratios probe *slope* and *normalization* (times 1/L) of diffusion parameter

AMS-02 anti protons - ~100 GeV

Hadronic annihilation/decay channels contribute to cosmic-ray anti protons. No clear excess is observed above backgrounds

Situation

- Background of secondary anti-protons can be predicted within factor of a few
- Measurements marginally consistent with secondary background (Giesen+ 15; Evoli+ 15)
- Hard to exclude astro explanation for excesses above secondaries (e.g. nearby SNR; e.g. Kachelriess+ '15, non-universal diffusion, etc)

But: DM fit is possible

AMS-02 anti-protons - ~ 10 GeV

Indications for an excess around 10 GeV (Cuoco+16, see also Cui+16)

- Formally ~5 sigma preference for DM contribution, mass & flux compatible with GCE
- But: Simple propagation scenarios are insufficient to explain all CR data (and DM does not help) → Extraction of reliable limits or signal becomes a huge challenge

See also: Winkler+ 17; Carlson+14; Cirelli+14; Jin+15; Ibe+15; Hamaguchi+15; Lin+15; Kohri+15; Balazs&Li15; Doetinchem+15; Fornengo+13

Effect of various systematic uncertainties

Accounting for covariances of various systematics (Reinart & Winkler 2017)

- Refitting nuclear spallation data for Boron production from Carbon, Oxygen, Nitrogen, etc
- Charge-dependent solar modulation
- Refitting primary cosmic ray measurements
- \rightarrow Reasonable fit to B/C and pbar data with universal diffusion-reacceleration model \rightarrow Significance for $_{12}$ O CoV DM contribution drops to below 2 sigma
 - \rightarrow Significance for ~80 GeV DM contribution drops to below 2 sigma
 - \rightarrow Very strong limits on DM annihilation at low and higher DM masses

General AntiParticle Spectrometer (GAPS)

Searches for **anti-deuterons** with exotic atom formation

Funded by NASA & JAXA. First flight planned for ~2020.

10^{-4} BESS $\Phi_{\vec{d}_{\vec{d}_{\vec{d}}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}_{\vec{d}}}} \operatorname{S} \frac{1}{6} - 01 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 01 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}_{\vec{d}}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}}^{\text{max}} \left[\left(m^{2}_{\vec{d}_{\vec{d}}} \operatorname{S} \frac{1}{6} - 0 \right)^{-1} \right] \\ \Phi_{\vec{d}}^{\text{max}} \left[\left(m^{2}_$ Herms+ 2016 GAPS AMS W secondary SNR-B SNR-A 10^{-1} 101000.1 $T \left[\text{GeV}/n \right]$

Sever constraints on the range of detectable models comes from AMS-02 anti-protons.

Dark matter searches with anti-³He

Searches for anti-³He

- Recently considered by Carlson+ 14, Cirelli+ 14
- Smaller rates than anti-deuteron signal, but thought to be even cleaner than anti-deuteron
- However, new estimates indicate secondary anti-³He background might be larger and in reach of AMS-02 (Blum+ 2017)
- Ting (Dec 2016 CERN): Few ³He candidates in AMS-02 data, will take years to confirm → Secondary? Dark matter?

Instrumental panorama – Photons

DM center of mass energy \rightarrow Photon energy

Bounds on DM from Planck observations

Status

- Bounds depend on effective energy deposition (f_{eff}) , otherwise very robust
- Exclude s-wave annihilation below m~10 GeV unless annihilation into neutrinos dominates

$$\langle \sigma v \rangle \lesssim (1-4) \times 10^{-27} \left(\frac{m_{\chi}}{1 \,\mathrm{GeV}}\right) \mathrm{cm}^3 \mathrm{s}^{-1}$$

see also Ali-Haimoud+15; Liu+16; Chluba+16; Cline&Scott 13; Galli+13; Madhavacheril+13

The MeV – GeV sensitivity gap

Situation

- Spectral features play an important role for DM annihilation/decay at low energies (e.g., Boddy & Kumar, 15)
- Any of the proposed future missions (e-ASTROGAM, AMEGO) are expected to have very good energy resolution, greatly improving DM search prospects
- For leptonic channels, in-flight annihilation plays an important role (Bartels+ 17)

Radio searches for WIMP dark matter

CR electrons/positrons from DM generate **synchrotron radiation in radio**

Bright future for radio astronomy

- Several new and upcoming telescopes (LOFAR, MeerKAT, ASKAP, SKA, ...) improve current sensitivities by several orders of magnitude
- Prospects for WIMP searches *might* be excellent
- Turbulent and regular B-fields need to be better understood

see also: Crocker+10; Linden+11; Fornengo+11; Valdes+12; Storm+13; Spekkens+13; Bringmann+14; Cholis+14; Evoli+14; Tashiro+14; Fang&Linden 15; Cirelli&Taoso 16

Axion DM conversion in MW B-field?

Flux **very** uncertain: Need to know turbulence of Galactic B-field at meter scale...

$$\Gamma \propto \left| B(k=m_a) \right|^2$$

Kelley & Quinn 2017

Radio searches for bulge MSPs

Radio detection prospects (CDDHW 16)

(Bulge population is just below sensitivity of Parkes HTRU mid-lat survey)

- GBT targeted searches ~100h: ~3 bulge MSPs
- MeerKAT mid-lat survey ~300h: ~30 bulge MSPs

Our plans for the near future

 We teamed up with MeerKAT TRAPUM → plans for dedicated survey in 2019

Conclusions

- Indirect dark matter searches are 20% about killing dark matter models, and 80% about scrutinizing dark matter signal hints
 Might be frustrating from outside, but it is a sign that progress is made
- Prospects for WIMP searches
 - Anti-proton constraints are strong (although weaker in GeV excess region), more work required to make them as robust as possible
 - Origin of positron excess still unclear (HAWC might help to constrain pulsar emission), more data needed for DAMPE 1.4 TeV feature
 - In the mid-term future, synchrotron emission searches could be key to improve WIMP limits
- Other searches
 - Great experimental progress at X-ray and radio energies expected in upcoming years; great for sterile neutrino searches, maybe axions
 - Searches for bulge MSPs with MeerKAT (2019?) will probe Fermi GeV excess and might provide strong evidence for a pulsar origin.