

TOMMASO TREU University of California Los Angeles

Outline

Introduction

What is gravitational lensing and why do we need it?

Small-scale problems

- The inner regions of dark matter halos and the selfinteraction cross section
 - The core/cusp problem
 - Colliding clusters
- Dark matter substructure and the dark matter free streaming length

Dark matter substructure: a roadmap for the future

What's the dark matter?

Let's use gravity to find out

What is Gravitational Lensing?

Self-interaction cross section

The inner regions of dark matter

halos

Cold dark matter predictions

How is matter distributed in clusters?
Do clusters (and galaxies) follow a universal dark matter profile?

Navarro, Frenk & White 1996,1997; Moore et al. 1998; Navarro et al. 2007

Self-Interacting dark matter

- LSS are same
- Centers of clusters are flatter and rounder

Rocha et al. 2013

Self-Interacting dark matter

Only a limited range of (large) cross-sections has implications for clusters

Rocha et al. 2013

Methodology: critical lines and lensing constraints

Sand, Treu & Ellis 2002

Results from lensing and dynamics work

Newman et al. 2013

Colliding clusters

The bullet cluster

Clowe et al. 2006; Bradac et al 2006; Randall et al. 2008 see also Bradac et al. 2008

A possible explanation

Kaplinghat et al. 2016

Satellites as a probe of dark matter free streaming length

Warm Dark Matter

Free streaming ~kev scale thermal relic

Lovell et al. 2014

Dark satellites in CDM vs WDM

Li et al. 2016; Nierenberg et al. 2013

Luminous Satellites in CDM vs WDM

Nierenberg, Treu, Menci et al. 2016

"Missing satellites" and lensing

- Strong lensing can detect satellites based solely on mass!
- Satellites are detected as "anomalies" in the gravitational potential ψ and its derivatives
 - $-\psi'' = Flux$ anomalies
 - $-\psi'$ = Astrometric anomalies
 - $-\psi$ = Time-delay anomalies
- Natural scale is a few milliarcseconds. Astrometric perturbations of 10mas are expected

"Missing satellites" and lensing

Courtesy of D.Gilman

OSIRIS detection of substructure

OSIRIS detection of substructure

Astrometric perturbations: gravitational imaging

Mass substructure distorts extended lensed sources

Vegetti et al. 2010

Statistics from gravitational imaging

HST/AO can detect down to 3e8 Msun

Vegetti et al 2010, 2012, 2014

Limits on sterile neutrinos from gravitational imaging

Vegetti et al 2018

Statistical gravitational imaging

Birrer et al. 2017

Gravitational imaging: Future Prospects

• Current limit is 10⁸ msun (Vegetti et al. 2012, 2014) • With Next Generation Adaptive Optics and then TMT we should reach 10^7 solar masses and below, where the discrepancy with theory is strongest •LARGE SAMPLES WITH SUFFICIENT SENSITIVITY WITHIN REACH

Flux ratio anomalies: Future Prospects

Gilman, Birrer, Treu et al. 2018

Flux ratio anomalies: Future Prospects

Narrow line flux ratio anomalies can currently be studied for 20 systems
Future surveys will discover thousands of systems
NGAO/TMT will provide spectroscopic followup and emission line flux ratios

100 quasar lenses with Flux ratios. How do we do this in practice?

Roadmap. I. Find Lenses

Carry out large imaging survey.

- QSO forecasts by Oguri & Marshall (2010)
 - DES (~1000 lensed QSOs, including 150 quads)
 - LSST (~8000 lensed QSOs, including 1000 quads)
 - Euclid/WFIRST many more!
- Find lenses:
 - Different strategies for lensed QSOs and galaxies (Marshall+, Gavazzi+,Kubo+,Belokurov+,Kochanek+,Faure+,Pa wase+,Agnello+) and under development (Marshall, Treu, LSST collaboration)
 - Successfully demonstrated

In large imaging surveys

WFIRST

Needle in a haystack!

Which ones are lenses? Agnello, Kelly, Treu & Marshall 2015

We can find them using machine learning techniques

Agnello et al. 2015a; Williams et al. 2016

And here they are!

Agnello et al. 2015b

strides.astro.ucla.edu

Here are some more!

SDSSJ0248+1913	DESJ0405-3308	DESJ0408-5354	DESJ0420-4037	SDSSJ1251+2935
SDSSJ1433+6007	DESJ2038-4008	DESJ2346-5203	ATLASJ2344-3056	SDSSJ1330+1810
PSJ0630-1201	PSJ1606-2333	WISEJ0259-1635		

As viewed with the Hubble Space Telescope

Roadmap. II. Follow-up

- High resolution imaging: space or Adaptive Optics
- Deflector mass modeling: redshifts and stellar velocity dispersions (Keck/TMT)

High resolution information. Where

will it come from?

Imaging landscape after HST

Imaging landscape after 2018: Adaptive Optics

2012: 0.3-0.4 strehl at 2micron; improvements under way: PSF/TT

Imaging landscape after 2020: Next Generation Adaptive Optics

For strong lensing at galaxy scales interested in high-strehl small fov:
Keck-NGAO: 90% strehl at K, 60% at J (not funded yet)

Gemini,VLT, Subaru etc are all developing AO+
Resources spread between large fov and high strehl

Imaging landscape after 2025: Extremely Large Telescopes

With 30-40m apertures and advanced AO, in principle one can attain 10x resolution of HST
TMT should have strehl >70% at K and >30% at Y

Imaging landscape after 2019: JWST

* JWST is 6.5m, diffraction limited beyond 2micron * At best resolution equal to HST at ~0.7micron *0.032"/pix* Ok down to 1 micron or so, 0.65 strehl. * Resolution ~HST

 100 gravitationally lensed AGN with deep images of host galaxies at 100mas resolution or better; ~200-300 orbits with HST; 4 nights with Keck NGAO; very fast with TMT/ELT

AFWAŚ

 Redshifts of source and deflector: ~2 weeks of Keck; a few days of TMT / ELT. Easy with ALMA.

Conclusions

- Strong gravitational lensing is a cost-effective tool to study the composition of the universe:
- Lensing is probing the self-interaction cross sections that are relevant for astronomy. Hints of self-interaction are present, but are difficult to disentangle from baryonic effects
- Flux ratios and gravitational imaging can probe the subhalo mass function down to 1e7 solar masses and thus help rule out (or confirm) WDM
 - This is feasible in the next five years with a concerted follow-up effort of quasar lenses discovered in DES and other imaging surveys