Searching for the fingerprints of new phenomena with top quarks

KIT Particle Physics Colloquium 23 January 2025

CLUSTER OF EXCELLENCE

Higgs Field

Particle mass \propto interaction strength

q

Heaviest known particle: top quark

Electrons interact weakly with the Higgs field \rightarrow small mass

е

Photons do not interact with the Higgs field → massless

> Artistic view of the Higgs field. Image credit: beyondsciencetv.com

The discovery of a Higgs boson...

> ... by the ATLAS and CMS experiments at the LHC in 2012.

The discovery of a Higgs boson...

- > ... by the ATLAS and CMS experiments at the LHC in 2012.
- > Only a fraction of LHC Run-1 data: ~10 fb⁻¹ of data at $\sqrt{s} = 7$ TeV and 8 TeV

... what we have learned in the 12 years since ...

- > Tremendous progress made in precisely measuring the properties of this Higgs boson
 - Mass, width, CP properties, ...
 - Production cross-sections and couplings to SM particles
 - Observation of production and decay modes

... what we have learned in the 12 years since ...

- > Tremendous progress made in precisely measuring the properties of this Higgs boson
 - Mass, width, CP properties, ...
 - Production cross-sections and couplings to SM particles
 - Observation of production and decay modes

Full shape of the Higgs potential?

> SM: full shape accessible via Higgs self couplings

Katharina Behr

... and what we have yet to discover!

> BSM: many different shapes possible

- > Smoking-gun hints of extended Higgs sectors:
 - Deviation of self-coupling from SM value
 - Presence of extra Higgs bosons

Why care about the full potential?

> Higgs potential may provide answers to many key open questions in particle physics

Extended Higgs sector models

- > Supersymmetry: requires a second Higgs doublet
- > Axion DM models: require at least one more Higgs doublet or Higgs triplet
- > WIMP DM models with an extended Higgs sector (2HDM+a)
- > Additional sources of CP violation in the Higgs sector: possible with another Higgs doublet

Type-II 2HDM: neutral Higgs bosons

- > Dominant production: loop induced gluon fusion
- > Other production and decay modes depend on: $m_{A/H}$, $tan\beta = v_2/v_1$

Example: hMSSM

- > Minimal supersymmetric model
 - Higgs-sector: type-II 2HDM
 - SUSY particles assumed to be heavy
- > Only 2 free parameters: m_A , tan β

Main uncovered region at high m_A , low tan β :

Preferential A/H coupling to ttbar!

Signal-background interference

- Strong interference between signal process and irreducible background from SM ttbar production >
- Interference pattern strongly dependent on signal parameters (model dependence!) >

DESY.

Events

ATLAS result: JHEP 08 (2024) 013

JHEP 08 (2024) 013

> Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}

JHEP 08 (2024) 013

DESY.

Katharina Behr

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{IIbb} as proxy for m_{ttbar}
- > **1L channel**: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged

JHEP 08 (2024) 013

DESY.

Katharina Behr

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > **2L channel**: m_{llbb} as proxy for m_{ttbar}
- > **1L channel**: reconstruct full ttbar system, m_{ttbar}
 - Resolved: small-*R* jets assigned via χ^2 algorithm, ==1 or $\geq 2 b$ -tagged
 - Merged: large variable-*R* jet ($R_{max} = 1.5$) optimised for intermediate top boosts ($m_{ttbar} \sim 1 \text{ TeV}$)

JHEP 08 (2024) 013

Event categories

DESY.

- > Split resolved signal regions into bins of angular variables sensitive to spin state of the ttbar system
 - 1L: cosθ*, 2L: Δφ(II)
- > Improved signal-background discrimination, sensitivity improved ~20%
- > Additional discrimination between scalar and pseudoscalars

Background processes

JHEP 08 (2024) 013

Multijet

ATLAS Simulation

W+jets

Single top

- > Dominant and irreducible background from SM ttbar production
 - Correct NLO Powheg+Pythia MC to NNLO-QCD+NLO-EW [M. Czakon et al., JHEP 10 (2017) 186]
 - Via iterative reweighting in m(ttbar), $p_T(t)$, $p_T(tbar)$

Systematic uncertainties

 Largest sources of uncertainty: SM ttbar modelling

> tt NNLO includes:

- Uncertainties in reweighting
- Scale and PDF uncertainties on calculation
- Uncertainty on EW component from comparison of NN vs LUX PDFs

Katharina Behr

- > tt lineshape: comparison with MadSpin
- > tt PS: Pythia vs Herwig
- > m_{top:} ± 0.76 GeV

Uncertainty component	Fractional contribution [%]	
	$m_A = 800 \text{ GeV}$	$m_A = m_H = 500 \text{ GeV}$
	$\tan\beta = 0.4$	$\tan\beta = 2.0$
Experimental	30	42
Small- <i>R</i> jets (JER, JES)	22	29
Large-VR jets	11	20
Flavour tagging	13	17
Leptons	4	5
Other $(E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14
Modelling: SM $t\bar{t}$ and signal	91	79
<i>tī</i> NNLO	49	28
<i>tī</i> lineshape	27	29
$t\bar{t}$ ME-PS ($p_{\rm T}^{\rm hard}$)	36	30
$t\bar{t}$ ME-PS (h_{damp})	41	25
<i>tī</i> ISR& FSR	9	13
$t\bar{t}$ PS	29	41
$t\bar{t}$ cross-section	21	31
$t\bar{t}$ Scales & PDF	21	16
m_t	6	4
Signal	19	9
Modelling: other	41	16
W+jets	11	8
Z+jets	1	2
Multijet	27	10
Fakes	<1	1
Other bkg.	29	10
MC statistics	18	26
Total systematic uncertainty	±100	±100
Total statistical uncertainty	< 1	< 1

Statistical analysis without interference

> Simple likelihood parameterisation in terms of signal strength

 $\mu \cdot S + B$

- > Linear dependence on POI = μ
- > Standard LHC profile likelihood test statistic

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu))}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})}$

> p-value scan to determine upper limits on μ

Statistical analysis with interference

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI

JHEP 08 (2024) 013

Statistical analysis with interference

> Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!

Statistical analysis with interference

> Extend likelihood to include interference term

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

- > Quadratic dependence on POI = $\sqrt{\mu}$
 - Interference shape changes with POI
 - Local minima can appear in CLs scan
 - Upper limits not well defined!
- > Requires going beyond common statistical approaches
 - Choice of appropriate test statistic
 - Interpolation between signal hypotheses
 - Correct limit band calculation
 - New baseline in ATLAS StatAnalysis (on cvmfs)
 - Treatment of histograms with negative yields

Choice of test statistic

> Search stage:

- Should we reject SM in favour of (any) BSM hypothesis?
- Test agreement of data with range of interference patterns
- Consider all possible values of POI

• Should we reject the BSM hypothesis (μ =1) under consideration?

 $q_0 = -2\ln\frac{\mathcal{L}(0,\hat{\theta}_0)}{\mathcal{L}(\sqrt{\mu},\hat{\theta}_{\hat{\mu}})}$

• Test (dis)agreement of data with specific interference pattern of tested signal hypothesis

$$q_{1,0} = -2\ln\frac{\mathcal{L}(1,\hat{\hat{\theta}}_1)}{\mathcal{L}(0,\hat{\hat{\theta}}_0)}$$

$\sqrt{\mu}$ equivalent to g_{Att}

Search stage

JHEP 08 (2024) 013

 $\mathcal{L}(0, \hat{\hat{\theta}}_0)$

 $\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\theta})$

 $q_0 =$

2L

- > Tested agreement between data and S+I+B hypotheses with masses [400,1400] GeV and widths [1,40]%
 - Most significant deviation from SM-only (2.3 σ local): $m_A = 800$ GeV, $\Gamma_A/m_A = 10\%$ and $\sqrt{\mu} = 4.0$
 - Driven by narrow upward fluctuation around 800 GeV in merged region

1L Resolved 2b

Constraints on relevant benchmark models: hMSSM

> Strongest constraints on m_A at lowest value of $tan\beta = 1.0$

Dark matter interpretations: 2HDM+a

- > Minimal, UV-complete extension of simplified models
- > First DM interpretation of an interference search
- > First search considering interference patterns due to mixing of two pseudo-scalars

JHEP 08 (2024) 013

Dark matter interpretations: 2HDM+a

- > Benchmark scenario 3a in LHC DM WG recommendations
- > Leading expected exclusion at high mediator mass
- > Observed exclusion slightly weaker than H⁺(tb) result due to downward fluctuation

Science Bulletin 69 (2024) 3005

Coupling constraints for a single (pseudo)scalar

- > Upper limit on coupling to top quarks for a fixed width
- > "Island" due to local minima in likelihood scan

Extra: ALPs coupling to top quarks

- > Interference searches sensitive to axion-like particles (ALPs) at the GeV scale
- > Key difference compared to heavy Higgs bosons: direct gluon coupling!
 - Different interference pattern!

Related work: Jeppe et al: DESY-24-059 Carra et al: PRD 104 (2021) 9, 092005

Extra: ALPs coupling to top quarks

- > Assume $c_G = 0$
- > Constraints from heavy-Higgs search directly translate to constraints on c_t

Width depends on m_a and c_t Fixed pseudoscalar width Axion-Top coupling constraints 2.5 ا^{#4} $10^{(}$ ATLAS ndirect Z′ $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 10^{-1} 2.0 TLAST $A \rightarrow t\bar{t}, \Gamma/M = 5\%$ Indirect hhZ MS tī non resonant 10^{-1} 1 $\frac{10^{-3}}{10^{-3}}$ $\frac{10^{-3}}{10^{-4}}$ $\frac{10^{-3}}{10^{-5}}$ 1.5 TLAS t*īa* search 1.0 $g_{Att}/v = c_t/f_a$ Observed 95% CL exclusion 0.5 B decays Expected 95% CL exclusion $(\pm 1\sigma \text{ and } \pm 2\sigma)$ 10^{-6} $\Gamma_{tt} > \Gamma_{total}$ (unphysical) Esser et al, JHEP 10 (2024) 164 0.0 10^{-7} 500 600 700 800 900 1000 1100 1200 1300 1400 400 10^{-1} 10^{-2} 10^{0} 10^{2} 10^{3} 10^{1} 10^{4} M_A [GeV] m_a [GeV]

CMS preliminary result: CMS-PAS-HIG-22-013

In a nutshell

- > Equivalent interference search on CMS Run-2 dataset
- > Observe > 5σ deviation of the data from the prediction in the ttbar threshold region (m_{tt} < 400 GeV)
 - Consistent with presence of ttbar quasi-bound state ("toponium")
 - Consistent also with narrow pseudoscalar state with $m_A = 365 \text{ GeV}$

Toponium – a ttbar quasi-bound state

- > Formation of ttbar quasi-bound state below ttbar threshold
 - Plane wave packet propagating until the QCD potential barrier
 - Scale: the Bohr radius a_0
 - Oscillation between the barrier until the system decay
 - Scale: Γ_t^{-1}
 - Possible gluon exchange before decay
 - Off-shell top or anti-top at decay
- > Described by non-relativistic QCD (NR-QCD)
- > Approximated as pure-S pseudoscalar resonance η_t
 - m = 343 GeV and $\Gamma/m = 7 \text{ GeV}$

dσ / dM [pb/GeV]

CMS strategy

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > 2L channel [leading sensitivity for toponium \rightarrow lowest m_{ttbar}]
 - Analytic reconstruct of m_{ttbar}
 - Assumptions: all p_T^{miss} from vv, tops on-shell, W bosons on-shell
 - Assign *b*-jets using likelihood, based on m_{lb}
 - Finite detector resolution: repeat reconstruction 100 times with randomly smeared inputs, take weighted average

CMS strategy

- > Two orthogonal sets of regions: 1L (e or μ) + 2L (e⁺e⁻, e μ , $\mu^+\mu^-$)
- > 2L channel [leading sensitivity for toponium \rightarrow lowest m_{ttbar}]
 - Analytic reconstruct of m_{ttbar}
- > 1L channel
 - Resolved topology: ≥4 small-*R* jets, ==2 *b*-tags
 - "Merged" topology: ==3 jets, ==2 *b*-tags
 - Reconstruct m_{ttbar} : via χ^2 algorithm

Katharina Behr

CMS: angular variables

- > Split 1L and 2L regions into bins of angular variables sensitive to spin state of the ttbar system
 - 1L: cosθ*

CMS: angular variables

- > Split 1L and 2L regions into bins of angular variables sensitive to spin state of the ttbar system
 - 1L: cosθ*
 - 2L: Chel, Chan

$$c_{\text{hel}} = -(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

$$c_{\text{han}} = +(\hat{\ell}^+)_k (\hat{\ell}^-)_k - (\hat{\ell}^+)_r (\hat{\ell}^-)_r - (\hat{\ell}^+)_n (\hat{\ell}^-)_n$$

Enhances sensitivity to pseudoscalar

Enhances sensitivity to scalar

DESY.

Katharina Behr

Page 42

CMS 2L signal regions

CMS-PAS-HIG-22-013

Binned in c_{hel} and c_{han}

High c_{hel} bins most sensitive to pseudoscalar states

CMS 2L signal regions

Prefit

BSM pseudoscalar: A+I+B

Toponium: η+B

Differences in background modelling

> Reweighting from NLO Powheg+Pythia to NNLO-QCD+NLO-EW

> CMS:

- Double differential reweighting in m_{tt} and $cos\theta_{t}^{*}$
- Calculated with HATHOR and MATRIX
- m_t = 172.5 GeV
- > ATLAS: m_t = 173.3 GeV

Anuar et al, arxiv:2404.19014

Differences in treatment of systematic uncertainties

> Top Yukawa coupling

- Not included in ATLAS model, not provided by Mitov et al.
- Leading for CMS

> Top mass uncertainty

- Heavily constrained and high ranking for CMS
- Not the case for ATLAS
- > Parton shower (Pythia8 vs Herwig7)
 - Major uncertainty for ATLAS: high-ranking, pulled, and constrained
 - Small impact for CMS (internal studies)
 - Impact reduced by use of c_{hel} and c_{han} ?

Comparison with ATLAS result: sensitivity

- Note 1: CMS choice of standard profile-likelihood test statistics leads to slightly over-optimistic constraints for them as they compare to global minimum instead of µ=0
- > Note 2: Islands in exclusion contour due to local minima in CL_s scan

> Developed suite of novel technical and statistical tools addressing interference patterns

>

Summary

- > First constraints beyond 1 TeV and on DM models provided by ATLAS
- > Threshold excess observed by CMS toponium?
- Investigations are on-going...

Interference searches in ttbar final states open up exciting regions of (B)SM parameter space

Thank you!

Helmholtz Young Investigator Group "Fingerprints of the Vacuum" Contact: **Dr. Katharina Behr** (katharina.behr@desy.de)

Extra Material

Toponium – modelling

- Simplified model used in CMS result >
 - Based on work by C. Severi •
 - Pseudoscalar resonance η_t with m = 343 GeV and Γ/m = 7 GeV ٠
- General consensus that this is too simplistic >
 - Toponium is NOT an s-channel resonance •
 - Missing octet contributions ٠
 - Concerns regarding modeling of off-shell top quarks •
- More complete model by B. Fuks [arXiv:2411.18962] >
 - Under study by ATLAS and CMS •

Kiyo et al:

Aside: entanglement measurements close to threshold

- > Threshold region sensitive to entanglement between top and antitop
- > Top antitop system = two qubit system
- > Maximal entanglement in spin-singlet state for $gg \rightarrow tt$ at threshold

Aside: entanglement measurements close to threshold

- > Entanglement observed by both ATLAS and CMS close to threshold in 2L channel
- > Addition of toponium model improves agreeement between data and expectation for CMS

CMS 1L signal regions

Binned in $cos\theta^*$

Post-fit excess less pronounced but clearly visible

CMS-PAS-HIG-22-013

Binned in $\cos\theta^*$

Post-fit excess less pronounced but clearly visible

ATLAS 1L signal regions (pre-fit)

- > Pre-fit excess in data in lowest m_{tt} bins for all resolved signal regions and deficit in high m_{tt} tails
 - Similar to what CMS observes pre-fit
- > Probe same kinematic range as CMS
 - Binning: 320, 350, 380, 410, 440, ...

Comparison with CMS: 320, 360, 400, 440, ...

ATLAS 1L signal regions (post-fit)

- > Good post-fit agreement between data and prediction in all Resolved 2b signal regions
- > Fit can accommodate pre-fit excess within uncertainties

Context

- > Previous ATLAS search on 8 TeV data in the 1L channel
 - First LHC search to account for interference effects
 - Interpreted in type-II 2HDM

- > Improvements compared to ATLAS 8 TeV search:
 - Statistical combination of 1L and 2L channels
 - SR targeting merged hadronic top decays
 - Reweight SM ttbar background to NNLO-QCD+NLO-EW
 - Improved statistical treatment
 - Wider variety of benchmark models: hMSSM, 2HDM+a, model-agnostic interpretation

1L Resolved

- > Require \geq 4 jets, \geq 1 b-jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Assignment of jets based on χ^2 minimisation

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{(m_{jjb} - m_{jj}) - m_{t_{h} - W}}{\sigma_{t_{h} - W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{t_{l}}}{\sigma_{t_{l}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_{h}} - p_{T,t_{l}})}{\sigma_{diff}p_{T}}\right]^{2}$$

- > Scale jet 4-vectors for hadronic decay to match W- and top-mass requirements
 - Improves m_{ttbar} resolution by around 12%

1L Merged

> Top candidate jet:

- Leading large variable-R jet (R_{max} = 1.5, R_{min} = 0.4, ρ = 600 GeV) with p_T > 200 GeV, m > 100 GeV
- Reclustered from R=0.4 jets
- Optimised for semi-merged and merged regimes in the m_{ttbar} range [500,1500] GeV
- > Leptonic top b-candidate jet: \geq 1 small-R jet well separated from top candidate jet
- > Reconstruct full ttbar system:
 - Neutrino 4-vector from W-mass constraint
 - Selected lepton
 - Leptonic top b-candidate
 - Top candidate jet

Background processes

- > Dominant and irreducible background from SM ttbar production
 - Correct NLO Powheg+Pythia MC to NNLO-QCD+NLO-EW [M. Czakon et al., JHEP 10 (2017) 186]
 - Via iterative reweighting in m(ttbar), $p_T(t)$, $p_T(tbar)$
- > Smaller backgrounds
 - Wt production
 - Multijet (1L) \rightarrow fully data-driven (Matrix Method)
 - W+jets (1L) \rightarrow norm. corrections (charge-asymmetry method)
 - Z+jets (2L) \rightarrow m(llbb) reweighting from CR
 - ttbar+V/h
 - Diboson
 - Fakes (2L)

Systematic uncertainties

Largest sources of uncertainty: SM ttbar modelling

Comparison with CMS:

- Top Yukawa coupling uncertainty on higher-order prediction their highestranking one for toponium fit
 - Not considered by ATLAS as not available in theory prediction

Katharina Behr

Top-mass uncertainty of ±1 GeV but constrained to ~200 MeV

Uncertainty component	Fractional contribution [%]	
	$m_A = 800 \text{ GeV}$	$m_A = m_H = 500 \text{ GeV}$
	$\tan\beta = 0.4$	$\tan\beta = 2.0$
Experimental	30	42
Small- <i>R</i> jets (JER, JES)	22	29
Large-VR jets	11	20
Flavour tagging	13	17
Leptons	4	5
Other ($E_{\rm T}^{\rm miss}$, luminosity, pile-up, JVT)	10	14
Modelling: SM $t\bar{t}$ and signal	91	79
$t\bar{t}$ NNLO	49	28
$t\bar{t}$ lineshape	27	29
$t\bar{t}$ ME-PS $(p_{\rm T}^{\rm hard})$	36	30
$t\bar{t}$ ME-PS (h_{damp})	41	25
<i>tī</i> ISR& FSR	9	13
$t\bar{t}$ PS	29	41
$t\bar{t}$ cross-section	21	31
$t\bar{t}$ Scales & PDF	21	16
m_t	6	4
Signal	19	9
Modelling: other	41	16
W+jets	11	8
Z+jets	1	2
Multijet	27	10
Fakes	<1	1
Other bkg.	29	10
MC statistics	18	26
Total systematic uncertainty	±100	±100
Total statistical uncertainty	< 1	< 1

Uncertainty correlation scheme

- > Experimental uncertainties fully correlated between regions and samples
- Modeling uncertainties uncorrelated between samples
 - Except m_{top} uncertainty, which is correlated between S, S+I, and B samples
- > Modeling uncertainties correlated across regions with the following exceptions:
 - Uncorrelated between all 11+5 regions:
 - tt ME-PS (p_{T,hard}), tt ME-PS (h_{damp}), tt PS
 - Uncorrelated between Resolved and Merged regions of 1L channel and the 2L channel but correlated across angular bins
 - tt cross-section, tt scales, tt ISR&FSR
- > Various alternative correlation schemes were tested, no significant impact on sensitivity
 - Including partial correlation

Comparison with CMS:

> Correlate most modeling uncertainties across SRs

Nuisance parameter ranking

Katharina Behr

>

>

tt PS

Search stage (pre-fit)

 $q_0 = \frac{\mathcal{L}(0, \hat{\hat{\theta}}_0)}{\mathcal{L}(\hat{\sqrt{\mu}}, \hat{\theta}_{\hat{\sqrt{\mu}}})}$

> Pre-fit excess in data in lowest m_{tt} bins for all resolved signal regions

1L Merged

1L Resolved 2b

2L

Katharina Behr

Limit band calculation (1)

- Contour method (previous ATLAS default)
 - Determine dataset A_N representative of the N σ fluctuation of test statistics under b-only hypothesis
 - A_N is dataset with $\mu = \mu_N$ where μ_N solves the equation: $q_{\mu N} = N^2$
 - Here q_{μ} is the normal LHC profile likelihood test statistic
 - Unique solution if likelihood linear in $\boldsymbol{\mu}$
 - If not, can lead to nonphysical crossing of the exclusion contours (1 σ and 2 σ bands or median)

> Band method

- Independent of choice of test statistic
- Edges of 1σ (2σ) bands indicate range of signal hypotheses that would be excluded under the background-only hypothesis in 68% (95%) of equivalent searches (intuitive Frequentist approach)
- Find value r_1^N of test statistics r_1 related to the probability of the N-th Gaussian normile:

$$P\left(r_1 > r_1^N \middle| \operatorname{alt}\right) = 1 - \Phi(N)$$

Limit band calculation (2)

> Example how to calculate limit bands for given signal hypothesis

Setup StatAnalysis
export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
source \${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh
asetup StatAnalysis,0.2,latest
import ROOT

Assume you run on existing workspace muName = "mu" # name of the signal strength parameter mu_test = 3 # signal strength to test modelName = "simPdf" # name of the top-level pdf in the workspace dsName = "obsData" # name of observed data dataset in the workspace

w = ROOT.xRooNode("workspace.root")

nll = w[modelName].nll(dsName)

hp = nll.hypoPoint(muName,mu_test,0) # assuming here that 0 = bkg-only signal strength

hp.pCLs_asymp(nSigma) # replace nSigma with 0 to get expected, +1 to get +1 sigma, etc etc ... # returns a pair of numbers, first is pValue, second is uncert on the pValue

Exclusion regions: 2HDM and hMSSM

- Strongest mass exclusion at low $tan\beta$ to date >
- Significant improvement in tanß exclusion at 400 GeV compared to previous interference searches >
 - Up to 3.5 (3.16) in the 2HDM (hMSSM)

 $q_{1,0} = -2\ln\frac{\mathcal{L}(1,\hat{\hat{\theta}}_1)}{2}$

 $\mathcal{L}(0, \hat{\theta}_0)$

The ATLAS Detector

