Cosmic Particles in the Galactic Magnetic Field M. Unger (IAP, KIT)

based on

MU & G.R. Farrar "The Coherent Magnetic Field of the Milky Way" arXiv:2311.12120 MU & G.R. Farrar "Where Did the Amaterasu Particle Come From?" arXiv:2312.13273 T. Bister, G.R. Farrar & MU "Large-scale UHECR anisotropy in light of new GMF models" in prep.

Ultrahigh-Energy Cosmic Rays

Ultrahigh-Energy Cosmic Rays

00

Ultrahigh-Energy Cosmic Rays

6

Pierre Auger Observatory (Argentina)

- 25 Gt air calorimeter
- 20 kt water-Cherenkov particle detector (1600 stations)
- 27 fluorescence telescopes

Where are the EeVatrons?

Where are the EeVatrons?

Galactic Magnetism

NGC891, M. Krause MPIfR

$\mathcal{O}(\mu \mathbf{G})$ large-scale coherent fields! $u_B \approx u_{\text{turb}} \approx u_{\text{CR}}$

Proto-Galactic?

shearing by differential rotation

FIG. 1b

but:

- winding problem ($P_{\rm rot} \approx 0.2$ Gyr at r_{\odot})
- decay of field in turbulent diffusion $\mathcal{O}(10^8 \text{yr})$

Galaxy simulations:

stellar density

magnetic field

gas density

Outline

- Galactic Magnetic Field
- Origin of the UHE Dipole
- Origin of the Amaterasu Particle

Outline

Galactic Magnetic Field

- Origin of the UHE Dipole
- Origin of the Amaterasu Particle

Observational Tracers of the Galactic Magnetic Field

Extragalactic Rotation Measures

 $\theta = \theta_0 + \mathrm{RM}\,\lambda^2$

Polarized

light

Magnetic field

Plasma

Thermal Electron Models

112 pulsar DMs

189 pulsar DMs

Cordes&Lazio arXiv:0207156 Yao, Manchester & Wang, ApJ 2017 11/31

calibration uncertainty? cosmic-ray spectral index?

Cosmic-Ray Electrons

constrained by local lepton flux and D_0/H from B/C

homogenous and isotropic diffusion $D_0 \propto R^{\delta}$ (rigidity R)

RM and Q&U of "base model"

Data and Model

- 6520 data points
- 15-20 parameters
- typical reduced $\chi^2/n_{\rm df}$ = 1.2...1.3, depending on model variation

Data and Model

 $\chi^2/{\rm ndf} = 7923/6500 = 1.22$

Model Variations

8 variations (subset giving the greatest diversity of CR deflection predictions):

name	variation	χ^2/ndf
base	fiducial model	1.22
xr	radial dependence of X-field	1.30
spur	replace grand spiral by local spur (Orion arm)	1.23
ne	change thermal electron model (NE2001 instead of YMW16)	1.19
twist	unified halo model via twisted X-field	1.26
nbcorr	n_e -B correlation	1.22
cre	cosmic-ray electron vertical scale height	1.22
syn	USE COSMOGLOBE synchrotron maps	1.50

NoriDuter
 Perseus
 Local
 Ser.Car

Cosmic-Ray Deflections

- D. Harari
- Larmor radius of charged particle in B-field

$$r = 1.1 \,\mathrm{kpc} \, \frac{R/10^{18} \,\mathrm{V}}{B/\mu\mathrm{G}}$$

- rigidity $R = \frac{cp}{eZ} \stackrel{\text{\tiny e=C=1}}{=} \frac{E}{Z}$
- typical GMF deflections (JF12)

$$\theta_{\rm coh} \sim 3^\circ \left(\frac{R}{10^{20}~{\rm V}}\right)^{-1}$$

Deflections at 20 EV (base model) (backtracking)

60 degree 50 40 angle 30 deflection 20 10 Ω

Deflections at 20 EV (model ensemble and JF12) (backtracking)

JF12 base ехрХ antopi (doore 2 4 8 8 9 2 4 8 8 9 twistX spur neCL 3 2 2 2 2
 4 2 2 2 3
 5 3 2 4 2 3
 6 4 5 5 5 50 40 50 50 10 40 50 50 10 10 30 20 10 cre10 synCG nebCor 8 2 2 2 3 2 2 00000 (00000) (000000) 000000 00000 (0000000) 0000000 00000 (000000) 50 40 50 50 10

Deflections at 20 EV (backtracking)

Outline

- Galactic Magnetic Field
- Origin of the UHE Dipole
- Origin of the Amaterasu Particle

Dipolar Anisotropy of UHECRs (E> 8 EeV) – Galactic Origin?

Dipolar Anisotropy of UHECRs (E> 8 EeV) – Extragalactic Origin?

Dipolar Anisotropy of UHECRs (E> 8 EeV) – Extragalactic Origin?

Compatibility of UHE Dipole with Large-Scale Structure and GMF

extragalactic "illumination"

Compatibility of UHE Dipole with Large-Scale Structure and GMF

compatibility of direction vs. source density

Bister, Farrar, MU in prep., see also Globus+18, Ding+21, Bister+24

dipole, LSS and GMF compatible if $10^{-5}~{
m Mpc}^{-3} \lesssim n_s \lesssim 10^{-3}~{
m Mpc}^{-3}$ (assuming EGMF negligible)

Outline

- Galactic Magnetic Field
- Origin of the UHE Dipole
- Origin of the Amaterasu Particle

Application: Localization of the "Amaterasu" Particle

_ The Guardian

'What the heck is going on?' Extremely high-energy particle detected falling to Earth

SPIEGEL Wissenschaft

Ultrahochenergetisches kosmisches Teilchen traf die Erde

OMG! Schon wieder!

nature

The most powerful cosmic ray since the Oh-My-God particle puzzles scientists

= tie3

A Ray From Space Hit Earth with Such Incredible Power That Scientists Named It After a God

The source of the Amaterasu particle, named after the Japanese sun goddess, is a "big mystery."

Science

RESEARCH ARTICLE ASTROPARTICLE PHYSICS

An extremely energetic cosmic ray observed by a surface detector array

(B) Date: 27 May 2021 Time: 10:35:56 474337 UTC

STATUS IS ADD IN THE SDOGT 12.8 MIR of 2.2 km STREET, St. 9 MIP or 17 km

> 15 20

STATE ALL MID # 1.93m SDITIR \$7 MP #2.7 km

TELESCOPE ARRAY COLLABORATION*† R. U. ABBASI, M. G. ALLEN R. ARIMURA, J. W. BELZ, D. R. BERGMAN, S. A. BLAKE, B. K. SHIN, I. J. BUCKLAND, I., I. AND Z. ZUNDEL

(A) Surface detector array of TA


```
• E = \left(2.44 \pm 0.29 \,(\text{stat.}) \,{}^{+0.51}_{-0.76} \,(\text{syst.})\right) \times 10^{20} \,\text{eV}
```

• if Fe:
$$E_{\text{nom}} = (2.12 \pm 0.25) \times 10^{20} \text{ eV}$$

• Fe at
$$-1\sigma_{\text{syst.}}$$
: $E_{\text{low}} = (1.64 \pm 0.19) \times 10^{20} \text{ eV}$

$\begin{array}{ll} \mbox{Simplest Assumption: Fe Nucleus from Standard Accelerator} \\ (\mathcal{R}_{max} \sim 10^{18.6-18.7} \mbox{ V}) & \mbox{Peters Cycle:} \end{array}$

TA 14-year SD spectrum, Kim et al, EPJ Conf 283 (tm2023) 02005

... or ultra-heavy nuclei? G.F. Farrar arXiv:2405.12004 and B.T. Zhang et al arXiv:2405.17409

Pierre Auger Coll. 2023

Photodisintegration in source:

MU, Farrar, Anchordoqui PRD15 28/31

Propagation of Fe in Extragalactic Photon Fields

horizon between 8 and 50 Mpc

Mar

Arrival Direction

localization uncertainty: 6.6% of 4π or 2726 deg²

uncertainty of coherent deflection, random field, Galactic variance, TA energy scale, statistical uncertainty of E

Distribution of galaxies up to D=150 Mpc

 $E_{\text{low}} - 2\sigma$, D_{0.1}=72 Mpc

sin(latitude)

$E_{\text{low}} - 1 \sigma$, D_{0.1}=42 Mpc

E_{low} , D_{0.1}=25 Mpc

E_{nom} , D_{0.1}=10 Mpc

Conclusions

Galactic Magnetic Field

- deflects arrival directions of UHECRs
- new analysis of coherent magnetic field
 - improved parametric models
 - full-sky RM data
 - synchrotron from WMAP, Planck
 - variation of thermal electron models
 - variation of cosmic-ray electrom models
 - striation vs. n_e -b correlations
- model ensemble bracketing uncertainties

Application to UHE Dipole

• consistent with deflected large-scale structure

Application to UHE Amaterasu Particle

- localization uncertainty 6.6% of 4π
- horizon between 8 and 50 Mpc
- none of the "usual suspects" within loc. uncert.
- transient in an otherwise undistinguished galaxy?