Evidence for a Rare *B* Decay with Two Invisible Neutrinos at Belle II

KCETA Colloquium, November 30th, 2023 Slavomira Stefkova

slavomira.stefkova@kit.edu

Karlsruhe Institute of Technology

Institute of Experimental Particle Physics

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

© <u>Quanta Magazine</u>

Matter - antimatter imbalance

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Dark Sector

Neutrino masses

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

3. CKM Matrix = assemble all the parts together

KIT KCETA Colloquium

2. Make measurements of the flavour observables = bake cake parts

On-resonance data

Why *B*-hadrons decays in particular?

- Light enough to be produced abundantly but heavy enough to have many decays
- Predictions for SM observables are well-known

One of the main missions of B-factories is to perform searches for new physics (NP) in rare decays

Rare decay: branching fraction $\mathscr{B}(B \to \text{decay products}) < 1 \times 10^{-5}$ \rightarrow only less then 1 in 100000 *B*-hadron decays in this way

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

stitute of Technology

Why *B*-hadrons decays in particular?

- Light enough to be produced abundantly but heavy enough to have many decays
- Predictions for SM observables are well-known

One of the main missions of *B*-factories is to perform searches for new physics (*NP*) in rare decays, which cannot be fully reconstructed \rightarrow have missing energy

Rare decay: branching fraction $\mathscr{B}(B \rightarrow \text{decay products}) < 1 \times 10^{-5}$ \rightarrow only less then 1 in 100000 *B*-hadron decays in this way

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

stitute of Technology

Belle II and SuperKEKB

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Today's Roadmap

New Belle II Measurement

DEUTSCHES ELEKTRONEN-SYNCHRO HAMBURG 80 DEUTSCHE BUNDESPOST 1984

Outlook

Belle II Collaboration

46th Belle II General Meeting, October 2023, Tsukuba, Japan

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

~1200 physicists and engineers from 122 institutions in 28 countries/regions

Belle II Collaboration

46th Belle II General Meeting, October 2023, Tsukuba, Japan

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

~1200 physicists and engineers from 122 institutions in 28 countries/regions

including KIT members

SuperKEKB

SuperKEKB operates nominally at $\sqrt{s} = 10.58$ GeV:

- $\Upsilon(4S) \rightarrow B\bar{B}$ in 96 %
- collected 362 fb⁻¹ ~ 390 mil. *B*-meson pairs
- record-breaking $\mathscr{L}_{inst} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- O currently in long shutdown

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Final goal is to:

- run @ ~10 × higher \mathscr{L}_{inst} than current record
- collect $\mathscr{L}_{int} = 50 \text{ ab}^{-1}$

Belle II Detector

Nearly full 4π coverage detector with:

- excellent sensitivity to low energy deposits
- excellent particle identification capabilities (PID)
- o good neutral reconstruction

LER (e⁺) 4 GeV

K_L and muon detector (KLM) Muon ID efficiency ~ 90 %

Belle II is best-suited to measure *B*-decays with significant missing energy

Slavomira Stefkova, slavomira.stefkova@kit.edu

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Event in Belle II

Typical $B^+ \to K^+ \nu \bar{\nu}$ event benefits from:

- cleaner environment compared to LHCb
- **o** constraints from well-known initial state kinematics

Belle II is best-suited to measure *B*-decays with significant missing energy

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Event in Belle II

Typical $B^+ \to K^+ \nu \bar{\nu}$ event benefits from:

- cleaner environment compared to LHCb
- **o** constraints from well-known initial state kinematics

Challenges of rare *B*-decays:

- O high reconstruction efficiency for visible particles
- o excellent MC modelling

Challenges of channels with neutrinos:

• excellent understanding of other neutrals

 $(\pi^0, K_L^0, K_s^0, n, \gamma, ...)$

14

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Decays: SM

$B^+ \rightarrow K^+ \nu \bar{\nu}$ decays in SM:

- flavour-changing neutral current ($b \rightarrow s$) transitions
- precise SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$

PRD 107, 1324 014511 (2023), PRD 107, 119903 (2023)

 $B^+ \rightarrow K^+ \nu \bar{\nu}$ observables are sensitive to many NP scenarios

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu} \bar{\nu}$ Decays: SM

$B^+ \rightarrow K^+ \nu \bar{\nu}$ decays in SM:

- flavour-changing neutral current ($b \rightarrow s$) transitions
- precise SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$

PRD 107, 1324 014511 (2023), PRD 107, 119903 (2023)

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Sensitivity to NP

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Decays: SM and Experiment

 $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays in SM:

- flavour-changing neutral current ($b \rightarrow s$) transitions
- precise SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ [PRD 107, 1324 014511 (2023), PRD 107, 119903 (2023)]
- $B^+ \rightarrow K^+ \nu \bar{\nu}$ observables are sensitive to many BSM scenarios

- $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays in experiment:
- Belle II searched for this decay with first 63 fb⁻¹ using **inclusive** tagging method [PRL 127, 181802 (2021)]
- o current limits order of magnitude above SM expectation

Latest Belle II measurement [arxiv: 2311.14647]:

- with full Belle II 362 fb⁻¹ dataset
- with signal modelling based on PRD 107, 119903 (2023) 0
- 0

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

This Colloquium

 e^+

with improved analysis (inclusive tagging ITA) + more conventional analysis (hadronic tagging HTA)

Strategy in a Nutshell

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA

- 1. Perform basic reconstruction (tracks and clusters)
 - I. Charged track objects: $p_T > 100 \text{ MeV/c}$
 - II. Neutral cluster objects : E > 100 MeV

- 1. Perform basic reconstruction (tracks and clusters)
 - I. Charged track objects: $p_T > 100 \text{ MeV/c}$
 - II. Neutral cluster objects : E > 60 MeV

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA

1. Perform basic reconstruction (tracks and clusters)

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA

1. Perform basic reconstruction (tracks and clusters)

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct signal kaon requiring kaonID

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag
- 3. Reconstruct signal kaon requiring kaonID

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct signal kaon requiring kaonID
- 3. Identify rest-of-event object (ROE)

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag
- 3. Reconstruct signal kaon requiring kaonID

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Reconstruction and Basic Selection

ITA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct signal kaon requiring kaonID
- 3. Identify rest-of-event object (ROE)

$$q_{rec}^2 = \frac{s}{4c^4} + M_K^2 - \frac{\sqrt{s}E_K^*}{c^4}$$

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag
- 3. Reconstruct signal kaon requiring kaonID

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Reconstruction and Basic Selection

ITA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct signal kaon requiring kaonID
- 3. Identify rest-of-event object (ROE)

$$q_{rec}^2 = \frac{s}{4c^4} + M_K^2 - \frac{\sqrt{s}E_K^*}{c^4}$$

HTA

- 1. Perform basic reconstruction (tracks and clusters)
- 2. Reconstruct hadronic tag
- 3. Reconstruct signal kaon requiring kaonID

Event cleaning: multiplicity direction of missing momentum

Discriminating variables

Seven major backgrounds categories:

ITA discriminating variables: signal kinematics, two/threetrack vertices, general event topology (e.g sphericity)

HTA discriminating variables: signal kinematics, B_{tag} , other track and cluster information

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Background suppression

- 1. Feed well-modelled discriminant variables in boosted decision tree (BDT) based classifiers:
 - **O TA** two consecutive BDTs:
 - first level filter BDT_1 with 12 input variables
 - key discrimination achieved by 35 inputs fed to BDT₂ $(3 \times higher sensitivity wrt BDT_1)$
 - HTA uses a single BDTh with 12 input variables
- 2. transform BDTh and BDT_2 to a uniform distribution equivalent to efficiency (η)
- 3. choose signal region (SR) = region with highest sensitivity
 - **TA** BDT₁ > 0.9, η (BDT₂) > 0.92
 - HTA $\eta(\text{BDTh}) > 0.4$

Background suppression

tree (BDT) based classifiers:

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Signal Extraction Strategy

Perform binned maximum likelihood fit to extract parameter of interest signal strength μ

- O ITA
 - fitting variables: classifier output $\eta(BDT_2)$ and mass squared of the neutrino pair q_{rec}^2
 - **o** simultaneous fit to on-resonance and off-resonance data to better constrain $q\bar{q}$
- **O HTA**
 - fitting variables: classifier output $\eta(BDTh)$
 - fit to on-resonance data only

Systematic uncertainties incorporated in the fit as nuisance parameters

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Validation shown for ITA, but applicable to HTA

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ITA SR

Signal efficiency checked with signal embedding procedure using $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ events:

- 1. Use $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ events
- 2. Remove muons from J/ψ
- 3. Replace K^+ kinematics by K^+ kinematics from simulated $B^+ \to K^+ \nu \bar{\nu}$ signal
- 4. Apply to data and simulation
- 5. Compare selection efficiency (except for PID efficiency)

Data/MC efficiency ratio: $1.00 \pm 0.03 \rightarrow$ good agreement

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Signal Efficiency

Figure 7 <u>arxiv: 2311.14647</u>

In SR, roughly 60% of expected background events in signal region come from BB events

Production and decays of *B* mesons via PYTHIA and EVTGEN

Composition:

- 47%: Semileptonic $B \to D^{(*)} (\to KX) l\nu$ decays
- 38%: Hadronic $B \rightarrow D^{(*)}K^+$ decays
- 14%: Hadronic decays involving K_I^0
- 1%: $B^+ \to \tau^+ \nu_{\tau}, B \to K^* \nu \bar{\nu}$ decays

BB Backgrounds

- Semileptonic *B*-meson decays generally well-modelled in EVTGEN:
 - Check invariant mass of the signal kaon track and any other track in ROE

• Resonances well reproduced in simulation

Modes with D^{**} less well known:

- Dedicated enlarged systematic uncertainties on branching fractions for $B \rightarrow D^{**} l \nu$
- O Impact of uncertainties of form factors found to be negligible

 $B^+ \rightarrow K^+ K_L^0 K_L^0$ decays with branching fraction of $\mathcal{O}(10^{-5})$ are very signal-like as K_L^0 can mimic missing neutrino:

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ K_L^0 K_L^0$ decays with branching fraction of $\mathcal{O}(10^{-5})$ are very signal-like as K_I^0 can mimic missing neutrino:

1. Study of the K_L^0 detection efficiency with $e^+e^- \rightarrow \phi(\rightarrow K_L^0 K_s^0)\gamma$ \rightarrow correct for 17% inefficiency in data wrt simulation

 $K_{\rm L}^0$ energy [GeV]

 $B^+ \rightarrow K^+ K_L^0 K_L^0$ decays with branching fraction of $\mathcal{O}(10^{-5})$ are very signal-like as K_L^0 can mimic missing neutrino:

- 1. Study of the K_L^0 detection efficiency with $e^+e^- \rightarrow \phi(\rightarrow K_L^0 K_s^0)\gamma$ \rightarrow correct for 17% inefficiency in data wrt simulation
- 2. Model the distribution of $B^+ \rightarrow K^+ K_L^0 K_L^0$ according to BaBar [PhysRevD.85.112010]:

• use $B^+ \to K^+ K^0_s K^0_s$ to check modelling of $B^+ \to K^+ K^0_I K^0_I$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 $B^+ \rightarrow K^+ K_L^0 K_L^0$ decays with branching fraction of $\mathcal{O}(10^{-5})$ are very signal-like as K_L^0 can mimic missing neutrino:

- 1. Study of the K_L^0 detection efficiency with $e^+e^- \rightarrow \phi(\rightarrow K_L^0 K_s^0)\gamma$ \rightarrow correct for 17% inefficiency in data wrt simulation
- 2. Model the distribution of $B^+ \rightarrow K^+ K_L^0 K_L^0$ according to BaBar [PhysRevD.85.112010]:
 - use $B^+ \to K^+ K^0_s K^0_s$ to check modelling of $B^+ \to K^+ K^0_L K^0_L$

Similar treatment for another rare hadronic signal-like backgrounds $B^+ \to K^+ K^0_S K^0_L, B^+ \to K^+ n \bar{n}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Modelling checked on pion-enriched control sample $B^+ \rightarrow \pi^+ X$:

• $B^+ \rightarrow \pi^+ X$ distribution already corrected for 17% K_L^0 detection inefficiency

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 $q_{
m rec}^2~~[{
m GeV^2}/c^4]$

Modelling checked on pion-enriched control sample $B^+ \rightarrow \pi^+ X$: • $B^+ \rightarrow \pi^+ X$ distribution already corrected for 17% K_L^0 detection inefficiency

Perform three-component fit to q_{rec}^2 :

• 30% increase of B with $D \rightarrow K_I^0 X$ component preferred

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Modelling checked on pion-enriched control sample $B^+ \rightarrow \pi^+ X$: • $B^+ \rightarrow \pi^+ X$ distribution already corrected for 17% K_L^0 detection inefficiency

Perform three-component fit to q_{rec}^2 : • 30% increase of B with $D \rightarrow K_L^0 X$ component preferred

Validated using other sidebands: $B^+ \rightarrow e^+ X, B^+ \rightarrow \mu^+ X$

Modelling checked on pion-enriched control sample $B^+ \rightarrow \pi^+ X$:

• $B^+ \rightarrow \pi^+ X$ distribution already corrected for 17% K_L^0 detection inefficiency

Perform three-component fit to q_{rec}^2 : • 30% increase of B with $D \rightarrow K_L^0 X$ component preferred

Validated using other sidebands: $B^+ \rightarrow e^+ X, B^+ \rightarrow \mu^+ X$

Check that $\eta(BDT_2)$ has good data/MC agreement

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

qq Backgrounds

In SR, roughly 40% of expected background events come from $q\bar{q}$

KKMC generator used to generate $q\bar{q}$ pairs, PYTHIA simulate hadronization, and EVTGEN used for decay modelling

Compare off-resonance data and continuum MC to check $q\bar{q}$ background modeling:

- Discrepancy in data/MC normalization (data 40% larger)
 - → propagated as systematic uncertainty
- Discrepancy in shape \rightarrow fixed by data-driven event weight corrections [J. Phys.: Conf. Ser. 368 012028]

but with:

- PionID instead of kaonID requirement
- Different q_{rec}^2 bin boundaries
- Only on-resonance data used for fit

Measured $\mathscr{B}(B^+ \to \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$ consistent with PDG value of $(2.3 \pm 0.08) \times 10^{-5}$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Closure test: $\mathscr{B}(B^+ \to \pi^+ K^0)$

Measurement of a branching fraction for a known rare decay mode $B^+ \rightarrow \pi^+ K^0$ with ITA strategy,

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$$\mu = 5.6 \pm 1.1(\text{stat})^{+1.1}_{-0.9}(\text{syst})$$

corresponding to

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 2.8 \pm 0.5 (\text{stat}) \pm 0.5 (\text{syst}) \times 10^{-5}$

Data-model *p*-value: 47%

3.6 σ compatibility wrt background-only hypothesis 3.0 σ compatibility wrt to the SM

$$\mu = 5.6 \pm 1.1(\text{stat})^{+1.1}_{-0.9}(\text{syst})$$

corresponding to

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 2.8 \pm 0.5(\text{stat}) \pm 0.5(\text{syst}) \times 10^{-5}$

Data-model *p*-value: 47%

3.6 σ compatibility wrt background-only hypothesis 3.0 σ compatibility wrt to the SM

Leading systematic uncertainties:

- background normalisation
- limited size of simulation sample for the fit model
- knowledge of $B^+ \rightarrow K^+ K^0_L K^0_L$ decay rate and modelling
 - of $B \rightarrow D^{**} l \nu$ decays

Figure 19 arxiv: 2311.14647

On-resonance data

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$$\mu = 2.2^{+1.8}_{-1.7}(\text{stat})^{+1.6}_{-1.1}(\text{syst})$$

corresponding to
$$\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [1.1^{+0.9}_{-0.8}(\text{stat})^{+0.8}_{-0.5}(\text{syst})] \times 10^{-5}$$

Data-model *p*-value: 61%

1.1 σ compatibility wrt background-only hypothesis 0.6 σ compatibility wrt to the SM

Leading systematic uncertainties:

- o background normalisation
- limited size of simulation sample for the fit model
- o mismodelling of extra-photon multiplicity correction

Compatibility between ITA and HTA results at 1.2 σ :

- O Events from the HTA signal region represent only 2% of the signal region ITA Perform combination at likelihood level:
- Correlations among common systematic uncertainties included
- Common data events excluded from ITA sample

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Combination

 $\mu = 4.6 \pm 1.0(\text{stat}) \pm 0.9(\text{syst})$

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

Combination improves the ITA-only precision by 10% 3.5 σ significance wrt background-only hypothesis 2.7 σ significance wrt SM

 \rightarrow first evidence of the $B^+ \rightarrow K^+ \nu \bar{\nu}$ process

Privately produced comparison!

(*) Belle reports upper limits only; branching fractions are estimated using published number of events and efficiency

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$: global picture

ITA result has some tension with previous semileptonic tag measurements: \circ a 2.3 σ tension with BaBar • a 1.8 σ tension with Belle

HTA result in agreement with all the previous measurements

Overall compatibility is good: $\chi^2/ndf = 5.6/5$

10

Prospects for $B^+ \to K^+ \nu \bar{\nu}$:

- Analyse bigger datasets
- O Improve inclusive and hadronic analysis method
- Employ semileptonic tag reconstruction

Prospects for $B \to K^{(*)} \nu \bar{\nu}$:

- Measure other decay channels
 - $\circ B^+ \to K^{*+} \nu \bar{\nu} : K^{*+} \to K^+ \pi^0, K^{*+} \to K_s^0 \pi^+$
 - $B^0 \to K^{*0} \nu \bar{\nu} : K^{*0} \to K^0_{\rm s} \pi^0, K^{*0} \to K^+ \pi^-$
 - $B^0 \to K^0_{\rm s} \nu \bar{\nu}$

Slavomira Stefkova, slavomira.stefkova@kit.edu

Other Avenues with Invisibles

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Conclusion

In summary:

- A search for the rare decay $B^+ \to K^+ \nu \bar{\nu}$ was performed with first 362 fb⁻¹
- The analysis strategy exploited an innovative technique with high sensitivity which allowed to obtain 0 a good precision with a limited dataset
- Furthermore a B-factory conventional approach was used as support analysis Ο The combination of the two analyses results in the 0

First evidence for the $B^+ \rightarrow K^+ \nu \bar{\nu}$ decay,

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- with
- $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$ constituting
 - Only 2.7σ consistency with SM

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Backup

$b \rightarrow s \nu \bar{\nu}$ transitions are correlated to flavour anomalies

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Flavour Anomalies

Anomalies observed in exclusive $b \rightarrow s\mu^+\mu^-$

Transition $b \rightarrow s\mu^+\mu^-$ Observable P_5' , \mathscr{B} Above 2.5 σ Significance

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Flavour Anomalies

$h \rightarrow s \nu \bar{\nu}$ transitions are correlated to flavour anomalies

Transition $b \rightarrow s\mu^+\mu^-$ Observable P_5' , \mathscr{B} Significance Above 2.5 σ

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Flavour Anomalies

Anomalies observed in exclusive $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow cl\nu$ transitions

$\mathcal{B}(B \to D^{(*)}\tau\nu)$ $\mathcal{B}(B \to D^{(*)}l\nu) \ (l = e, \mu)$ $R(D^{(*)}) =$ Around 3.0σ

 $b \rightarrow s \nu \bar{\nu}$ transitions are correlated to flavour anomalies

Anomalies observed in exclusive $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow cl\nu$ transitions

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Flavour Anomalies

 $\mathcal{B}(B \to D^{(*)}\tau\nu)$ $\mathcal{B}(B \to D^{(*)}l\nu) \ (l = e,\mu)$ und 3.0σ

Two complimentary research paths

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Karlsruhe I

Two complimentary research paths

Direct = dedicated searches for NP

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

61

Reconstruction Techniques

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Efficiency

 $\epsilon \sim 1 - 100\%$ $\epsilon \sim 1 - 3\%$ Inclusive (ITA) Exclusive semileptonic $B^{-}_{\mathrm sig}$ $\Upsilon(4S)$ $\Upsilon(4S)$ e^+ e^{-} e^+

Purity, Resolution

62

Different reconstruction techniques lead to nearly orthogonal data samples

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Selection Efficiency as a fn. q^2

HTA much lower efficiency w.r.t. ITA analysis, but a smaller variation in q^2

Selection efficiency

Selection stage	ϵ inclusive tag analysis	ϵ hadronic tag analysis (×10 ⁻²)
Hadronic FEI skim	-	2.482 ± 0.002
Object selection (acceptance)	0.89	_
Signal candidate selection	0.55	_
First signal candidate selection	0.53	_
Basic event selection	0.41	0.6598 ± 0.0011
BDT_1 filter	0.34	_
Signal search region	0.08	0.3996 ± 0.0009
Highest purity signal search region	0.02	_

- Default signal model \rightarrow PHSP model with SM form factor reweighting [arXiv:1409.4557]
- At low q^2 maximum signal efficiency of 13%
- No sensitivity for $q^2 > 16 \text{ GeV}^2/c^2$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

[PRL 127, 181802 (2021)]

FL Polarisation Fraction

Observables	Belle $0.71 \text{ab}^{-1} (0.12 \text{ab}^{-1})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$Br(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} u ar{ u})$	< 180%	26%	9.6%
${ m Br}(B^+ o K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${ m Br}(B^0 o u ar{ u}) imes 10^6$	< 14	< 5.0	< 1.5
${\rm Br}(B_s o u \bar{ u}) imes 10^5$	< 9.7	< 1.1	_

• Angle between B and K from K* decays

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

*The "improved" scenario assumes a 50% increase in signal efficiency for the same background level

Uncertainty on the Signal Strength µ Belle II Snowmass paper : 2 scenarios baseline (improved*) 3σ (5σ) for SM $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays with 5 ab⁻¹

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- Look for a photon with $E_{\gamma}^* > 4.7$ GeV, a K_S^0 and no extra tracks
- Extrapolate K_L^0 trajectory to the calorimeter
- Calculate efficiency from checking energy deposit distance-matched to the K_{T}^{0} trajectory \rightarrow Efficiency in data lower than MC of 17%

Use difference (17%) as a correction and an uncertainty of 50% assigned to it as systematics

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Validation: Neutral Energy

Calorimeter clusters are reconstructed as photon candidates and include:

- Real photons
- **Deposits from beam-backgrounds**
- Charged particle deposits away from trajectory
- Neutral hadrons, e.g: K_L^0

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

The energy of other hadronic clusters is biased:

• Summed neutral energy in $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ events in data and MC in agreement after 10% shift **o** Validated also with continuum simulation and off-resonance data

Use 10 % as correction for energy of hadronic clusters and a systematic uncertainty of 100% on the correction

Validation: Particle Identification

Track with at least one pixel hit and PID to identify as kaon

- ϵ (KaonID) ~ 68 %
- Mis-ID rate ($\pi \rightarrow K$) ~ 1.2 %

PID Data/MC correction factors:

- Obtained from $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K^- \pi^+)$ calibration channels
- Associated errors are propagated as systematic uncertainties

Validation with $B^+ \rightarrow D^0 (\rightarrow K^+ \pi^-) h^+$ samples, where $h = (K, \pi)$:

- Remove D^0 daughters to mimic signal topology
- Apply $B^+ \to K^+ \nu \bar{\nu}$ selection
- Fit ΔE to obtain yields and calculate fake rate

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 \rightarrow No further corrections applied

Statistical Model

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

In total 24 signal region bins:

• 12 bins for on-resonance: 4 bins of $\mu(BDT_2)$ and 3 bins of q_{rec}^2 12 bins for off-resonance: 4 bins of $\mu(BDT_2)$ and 3 bins of

Statistical model based on binned likelihood for signal and 7 background categories:

- Poisson uncertainties for data counts
- Systematic and MC statistical uncertainties included in the fit as nuisance parameters

The resulting likelihood has **o** 192 nuisance parameters one parameter of interest: signal strength $\mu = \mathscr{B}/\mathscr{B}_{SM}$, where $\mathscr{B}_{SM} = 4.97 \times 10^{-6}$, $(B \to \tau (\to K\overline{\nu})\nu$ removed,

treated as background)

Statistical Model

Statistical model based on binned likelihood for signal and 3 background categories: $B\bar{B}, c\bar{c}, q\bar{q} \ (q = u, d, s)$

- Signal region bins: 6 bins in $\mu(BDTh)$
- One-dimensional binned fit in $\mu(BDTh)$ for the onresonance data

The resulting likelihood has

- 45 nuisance parameters
- one parameter of interest: signal strength $\mu = \mathscr{B}/\mathscr{B}_{SM}$, Ο where $\mathscr{B}_{SM} = 4.97 \times 10^{-6}$ $[B \rightarrow \tau (\rightarrow K\overline{\nu})\nu$ removed, treated as background]

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Source	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background	50%	0.88
Normalization of continuum background	50%	0.10
Leading B -decays branching fractions	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	20%	0.49
<i>p</i> -wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	30%	0.02
Branching fraction for $B \to D^{(**)}$	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	100%	0.20
Branching fraction for $D \to K_L X$	10%	0.14
Continuum background modeling, BDT_c	100% of correction	0.01
Integrated luminosity	1%	< 0.01
Number of $B\bar{B}$	1.5%	0.02
Off-resonance sample normalization	5%	0.05
Track finding efficiency	0.3%	0.20
Signal kaon PID	O(1%)	0.07
Photon energy scale	0.5%	0.08
Hadronic energy scale	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	8%	0.21
Signal SM form factors	O(1%)	0.02
Global signal efficiency	3%	0.03
MC statistics	O(1%)	0.52

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Systematic Uncertainties

Source	Uncertainty size	Impact on σ_{μ}	
Normalization $B\overline{B}$ background	30%	0.91	
Normalization continuum background	50%	0.58	
Leading B -decays branching fractions	O(1%)	0.10	
Branching fraction for $B^+ \to K^+ K_L^0 K_L^0$	20%	0.20	
Branching fraction for $B \to D^{(**)}$	50%	< 0.01	
Branching fraction for $B^+ \to K^+ n \bar{n}$	100%	0.05	
Branching fraction for $D \to K_L X$	10%	0.03	
Continuum background modeling, BDT_c	100% of correction	0.29	
Number of $B\bar{B}$	1.5%	0.07	
Track finding efficiency	0.3%	0.01	
Signal kaon PID	O(1%)	< 0.01	
Extra photon multiplicity	O(20%)	0.61	2.
K_L^0 efficiency	17%	0.31	
Signal SM form factors	O(1%)	0.06	
Signal efficiency	16%	0.42	
Simulated sample size	O(1%)	0.60	3.

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Systematic Uncertainties

statistical uncertainty

on
$$\mu = 2.3$$

Basic Reconstruction and Selection

Reconstruct the B_{tag} in one of the 35 hadronic final states with the fullevent interpretation algorithm [arXiv:2008.06096]

Requirements a good B_{tag} :

• Cut on quality of B_{tag} reconstruction

Same kaon selection and identification as ITA

Event requirements:

- B_{tag} and K opposite charge
- $\circ N_{tracks} \leq 12$
- N_{tracks} (in drift chamber not associated to B_{tag} or K) = 0
- $n(K_S), n(\pi^0), n(\Lambda) = 0$

Rest of the event:

• Remaining tracks • ECL deposits (E > 60/150 MeV)

not associated to kaon or B_{tag}

Main Discriminating Variables

Neutral E_{ECL}^{extra} : calorimeter deposits not associated with tracks, with the B_{tag} nor the signal kaon and with energies > 60-150 MeV (depending on the polar angle)

These, together with other variables are combined in a boosted decision tree classifier: BDTh

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 $E_{miss} + p_{miss}$: sum of the missing energy and absolute missing three-momentum vector

ITA Results: Post-fit Distributions

On-resonance data

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Post-fit distributions for signal and background

BB Backgrounds

Semileptonic B^+ decays with K coming from a D decay are checked in:

- Invariant mass of the signal kaon and a ROE charged particle (most probable mass hypothesis from PID info $X = \pi, K, p$)
- **o** Resonances well reproduced

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

D decay are checked in: harged particle $X = \pi, K, p$

ROE Reconstruction: ECL clusters

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ROE Reconstruction: ECL clusters

ROE Reconstruction: ECL Clusters

Reconstruction of real photons:

• Photon-detection efficiency in data/MC che

→ good data/MC agreement

- O Photon energy is also well modelled in simu
 - \rightarrow associated 0.5% uncertainty on measure

Other hadronic sources:

- O Hadronic energy measurement is biased
- Derive 10% data/MC correction with $B^+ \rightarrow K$

Use difference (10 %) as a correction and an unc 100% assigned to it as systematics

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

ecked with
$$e^+e^- \rightarrow \mu^+\mu^-\gamma$$

Lation:
Associated 0.5% uncertainty on photon energy
is propagated as systematics uncertainty
K⁺J/ ψ channel
Beam-
related bkgs Charged
deposits

Corrections and the validation of the signal efficiency and background estimation follow similar methods as in ITA

discriminant variable) derived with control samples (same charge K and B_{tag})

 γ multiplicity distribution shows some data/MC disagreement pion enriched sample

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- One of the differences is the photon selection, which leads to specific needs for E_{ECL}^{extra} (the most

Method validated with pion enriched samples

The residual difference is considered as uncertainty

In addition to signal events, 5 types of backgrounds:

1. Continuum backgrounds $e^+e^- \rightarrow q\bar{q}, q \in (s, c, d, u)$

2.
$$e^+e^- \rightarrow \tau \bar{\tau}$$

Increase with \mathscr{Z}_{inst}

- 3. *B*-backgrounds
- 4. Beam-backgrounds: Touschek scattering, Coulomb scatterir synchrotron radiation, injection background, ...
- 5. Luminosity backgrounds: $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-e^+e^-$, ...

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Belle II Events

constrain continuum backgrounds

Recap of last Belle II measurement [Phys. Rev. Lett. 127, 181802]

The first analysis on $B^+ \to K^+ \nu \bar{\nu}$ performed by Belle II used first $\mathscr{L} = 63$ fb⁻¹

- **o** Based on innovative reconstruction approach (inclusive tagging)
- $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [1.9^{+1.3}_{-1.3} \text{ (stat)}^{+0.8}_{-0.7} \text{ (syst)}] \times 10^{-5} \to \text{no significant signal was observed}$
- Set competitive upper limit of 4.1×10^{-5} @ 90% C.L.

Good sensitivity with rather small dataset thanks to innovative approach

Best upper limit

• Set by BaBar $1.6 \times 10^{-5} @ 90\%$ C.L. [PhysRevD.87.112005]

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Particle Identification: Validation

$B^+ \rightarrow \overline{D^0} (\rightarrow K^+ \pi^-) h^+$ data and MC events with $h = K, \pi$ to validate the fake rate:

- Remove D^0 -decay tracks to mimic signal signature
- Use the full $B^+ \to K^+ \nu \bar{\nu}$ selection
- Compute ΔE with π mass hypothesis and select hwith nominal KaonID
- Estimate the number of $B^+ \to \overline{D}^0 K^+$ and $B^+ \rightarrow \overline{D}^0 \pi^+$ by fitting ΔE both for MC and data
- Obtain fake rate: $F = N_{\pi}/(N_{\pi} + N_{K})$

Data consistent with MC within 9%: 1.03 ± 0.09 \rightarrow No further corrections applied

 $B^+ \to K^+ \nu \bar{\nu}$ signal region

Observed minus expected *B* energy

ITA Results: Post-fit distributions

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

0.92

 \wedge

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA Results: Post-fit distributions

Examples:

HTA Signal region η (BDTh) > 0.4

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA Results: Post-fit distributions

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Lepton-ID sidebands

Also lepton-enriched samples are used to validate the method e/μ ID instead of K ID: $B^+ \rightarrow e^+ X$ and $B^+ \rightarrow \mu^+ X$

The correction factors found in the three sidebands are within 10% => considered a systematic uncertainty

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Half-split samples

Stability checks by splitting the sample into pairs of statistically independent datasets, according to various features

ITA

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

HTA

Treatment of the background source: $B^+ \rightarrow K^+ n \bar{n}$

- Neutrons can escape the ECL detector
- $B^+ \rightarrow K^+ n \bar{n}$ is not measured, use the isospin partner process: $B^0 \rightarrow K^0 p \bar{p}$
- BaBar data show a threshold enhancement not modeled in the three-body phase-space MC

shape and rate modeled according to BaBar data and assigned a 100% uncertainty

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

B->Knn bar

Reconstruction and basic selection I

Objects definition:

- Charged particles: good quality tracks with impact parameters close to the interaction point, with $p_T > 0.1$ GeV and within CDC acceptance
- **Photons:** ECL clusters not matched to tracks and with E>0.1 GeV
- K_s reconstruction with displaced vertex
 - Each of the charged particles and photons is required to have an energy of less than 5.5 GeV to reject misreconstructed particles and cosmic muons
 - Total energy > 4 GeV

First event cleaning:

$$4 \le N_{tracks} \le 10$$

 $17^{\circ} \le \theta^{*}_{miss} \le 160^{\circ}$

events $(\gamma\gamma,..)$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Input variables BDTs

Variables related to the kaon candidate

- Radial distance between the POCA of the K^+ candidate track and the IP (BDT_2)
- Cosine of the angle between the momentum line of the signal kaon candidate and the z axis (BDT₂)

Variables related to the tracks and energy deposits of the rest of the event (ROE)

- Two variables corresponding to the x, z components of the vector from the average interaction point to the ROE vertex (BDT_2)
- *p*-value of the ROE vertex fit (BDT_2)
- Variance of the transverse momentum of the ROE tracks (BDT_2)
- Polar angle of the ROE momentum (BDT₁, BDT₂)
- Magnitude of the ROE momentum (BDT₁, BDT₂)
- ROE-ROE (oo) modified Fox-Wolfram moment calculated in the c.m. (BDT_1, BDT_2)
- Difference between the ROE energy in the c.m. and the energy of one beam of c.m. $(\sqrt{s}/2)$ (BDT_1, BDT_2)

Input variables BDTs

Variables related to the entire event	Var
• Number of charged lepton candidates $(e^{\pm} \text{ or } \mu^{\pm})$ (BDT ₂)	• Ra
• Number of photon candidates, number of charged particle candidates (BDT_2)	• χ^2
• Square of the total charge of tracks in the event (BDT_2)	• M
• Cosine of the polar angle of the thrust axis in the c.m. (BDT_1, BDT_2)	• Mo da
 Harmonic moments with respect to the thrust axis in the c.m. [41] (BDT₁, BDT₂) 	
 Modified Fox-Wolfram moments calculated in the c.m. [42] (BDT₁, BDT₂) 	
 Polar angle of the missing three-momentum in the c.m. (BDT₂) 	

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

 Normalized Fox-Wolfram moments in the c.m. [41] (BDT₁, BDT₂)

• Square of the missing invariant mass (BDT₂)

• Event sphericity in the c.m. [40] (BDT₂)

- Cosine of the angle between the momentum line of the signal kaon track and the ROE thrust axis in the c.m. (BDT₁, BDT₂)
- Radial and longitudinal distance between the POCA of the K^+ candidate track and the tag vertex (BDT₂)

riables related to the D^0/D^+ suppression

- adial distance between the best D^+ candidate ertex and the IP (BDT₂)
- ² of the best D^0 candidate vertex fit and the best)⁺ candidate vertex fit (BDT₂)
- lass of the best D^0 candidate (BDT₂)
- ledian *p*-value of the vertex fits of the D^0 candiates (BDT₂)

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

KIT KCETA Colloquium

97

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Input variables BDTh

- Sum of photon energy deposits in ECL in ROEh
- Number of tracks in ROEh
- Sum of the missing energy and absolute missing three-momentum vector
- Azimuthal angle between the signal kaon and the missing momentum vector
- Cosine of the angle between the thrust axis of the signal kaon candidate and the thrust axis of the ROEh
- Kakuno-Super-Fox-Wolfram moments $H^{so}_{22},\ H^{so}_{02},\ H^{so}_{0}$
- Invariant mass of the tracks and energy deposits in ECL in the recoil of the signal kaon
- *p*-value of B_{tag}
- p-value of the vertex fit of the signal kaon and one or two tracks in the event to reject fake kaons coming from D^0 or D^+ decays

Validation of the signal efficiency in HTA

Same method as ITA

 $B^+ \rightarrow K^+ J/\psi$ data

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

preselection level: no BDTh cut, no best candidate selection

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Event in Belle II

Beam-backgrounds

Single-beam backgrounds:

- \triangleright Touschek scattering \rightarrow scattering of particles within a bunch \rightarrow Touschek rate $\propto N_{particles} \times \rho \rightarrow I \times \frac{1}{\sigma_{v} n_{b}}$
- **beam-gas scattering** \rightarrow Coulomb scattering and Bremsstrahlung (scattering off gas molecules) \rightarrow **Beam-gas rate** $\propto N_{gas molecules} \times$ $N_{\text{particles}} \rightarrow \mathbf{P} \times \mathbf{I} \times \mathbf{Z}_{\text{eff}}^2$
- \triangleright synchrotron radiation background \rightarrow consequence of a radial acceleration of the beam's particles achieved in bending magnets and quadrupoles
- \triangleright injection background \rightarrow continuous injection of charge into beam bunch modifying the beam bunch

Luminosity backgrounds:

▷ two-photon background → leading luminosity background ($e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-e^+e^-$), unlike any of the backgrounds above cannot be reduced!

DESY.

Slavomira Stefkova, slavomira.stefkova@kit.edu

Single-beam backgrounds can be mitigated with beam-steering, collimators, and vacuum-scrubbing

LHCb	Belle II
single-arm detector	hermetic detector
longitudinal momentum of B not known	known initial state kiner
	pro @ neutral object reconstructi

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

matics tion (photon, K_L)

LHC	SuperKEKB
ollisions	e ⁺ e ⁻ energy asymmetric collisions
ced by gluon fusion	$B\overline{B}$ produced from Y(4S)
es (B_d , B_s , B_c , <i>b</i> -baryon)	exclusive BB production
sted topology	asymmetric beam energy $ ightarrow$ boost
= 100 µb	$\sigma_{bb} = 1.1 \text{ nb}$
ounds (N/S = 1000)	B-backgrounds, continuum backgrounds + QED (N/S=4)
fb^{-1}	$1 \mathrm{ab}^{-1}$

LHCb

single-arm detector longitudinal momentum of B not known

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

SuperKEKB vs KEKB

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

	KEKB		SuperKEKB (Juni 2022)		SuperKEKB	
	LER	HER	LER	HER	LER	H
Energie [GeV]	3.5	8	4	7	4	
#Bunches	1584		2249		1800	
β [*] _x /β [*] _y [mm]	1200/5.9	1200/5.9	80/1.0	60/1.0	32/0.27	25
I [A]	1.64	1.19	1.46	1.15	2.8	
Luminosität [10 ³⁴ cm ⁻² s ⁻¹]	2.1		4.65 (Rekord!)		60	
Int. Luminosität [ab ⁻¹]	1		0.4	50		

Long Shutdown 1

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- Installation of 2-layered pixel vertex detector
- Improved data-quality monitoring and alarm system
- completed transition to new DAQ boards (PCle40)
- accelerator improvements: injection, non-linear collimators, monitoring replacement of aging components
- additional shielding and increased resilience against beam bckg

==> shipping to KEK in ~mid March ==> final tests at KEK scheduled in April

On track to resume data taking next winter with new pixel detector

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

- Currently working on pixel detector installation:

Fit Results (old)

Step 4: Perform ML fit to binned $p_T(K^+) \times BDT_2$ distribution to extract signal strength μ :

- $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2} \rightarrow \text{no significant signal is observed}$
- Limit of 4.1×10^{-5} @ 90 % C.L. \rightarrow competitive with only 63 fb⁻¹
- Leading systematic: background normalisation On-resonance data

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

$$1\mu = SM \mathscr{B}(B^+ \to K^+\iota)$$

109

[PRL 127, 181802 (2021)

Motivation:

- o FCNC transition involving 3rd generation leptons
- SM $\mathscr{B}(B \to K^{(*)}\tau\tau) \sim 10^{-7}$

BSM:

• Rate enhanced by NP models (especially those coupling only to 3^{rd} generation / with coupling \propto particle mass)

Current Bounds:

- Belle $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \times 10^{-3} @ 90 \% C.L.$ [arxiv:2110.03871]
- Babar $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.3 \times 10^{-3} @ 90 \% C.L.$ [PRL 118, 031802 (2017)]

Belle II can:

- o exploit different tagging approaches
- include more τ decay modes (improved scenario)
- measure other channels K^{*+}

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Belle II snowmass paper

 $\mathcal{B}(B^0 \to K^{*0} \tau \tau)$ (had tag) "Baseline" scenario "Improved" scenario ab^{-1} $< 1.2 \times 10^{-3}$ $< 3.2 \times 10^{-3}$ $< 2.0 \times 10^{-3}$ $< 6.8 \times 10^{-4}$ 5 $< 1.8 \times 10^{-3}$ $< 6.5 \times 10^{-4}$ 1050 $< 1.6 \times 10^{-3}$ $< 5.3 \times 10^{-4}$

KIT KCETA Colloquium

110

Motivation:

- LFV decay \rightarrow strongly suppressed in SM
- $R(D^{(*)})$ hints at τ vs μ/e non-universality (LFUV)
- **o** BSM: LFV can arise together with LFUV
- Models: Leptoquarks, Z', W'...

Belle only used hadronic reconstruction!

Belle II can:

- exploit different tagging approaches
- include more τ decay modes
- measure other channels such as $K_{\rm s}^0$

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Search for $B \to K^{(*)} \tau l$ decays

Search for $B^+ \rightarrow K^+X$ decays

BSM scenarios of $B^+ \rightarrow K^+ \nu \bar{\nu}$: new mediators (X):

- X (= dark scalar (S) or ALP (a)) decaying invisibly
- **O** ALP : probing coupling of a to SM fermions and gauge bosons
- Dark Scalar : probing coupling of S to SM Higgs boson
- Main experimental difference: two-body vs three-body kinematics

ALP (a) [arxiv: 2201.06580]

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Dark scalar (S) [PRD 101, 095006 (2020)]

Simplified sensitivity studies:

- With 0.5 $ab^{-1} \rightarrow expected$ an order of magnitude improvement
- With 50 $ab^{-1} \rightarrow expected$ two orders of magnitude improvement

Simplified sensitivity study probing different m_A scenarios for m_A in [5 MeV, 4 GeV]

- With 0.5 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-5} \otimes 90$ CL \to expected an order of magnitude improvement
- With 50 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-7} \otimes 90$ CL \to expected two orders of magnitude improvement

Belle II near-term plans

- Compare sensitivity of inclusive tagged vs hadronic tagged reconstruction approach for $B^+ \to K^+ a$
- Adapt inclusive tag to favour two-body kinematics 0
- Perform search for $B^+ \rightarrow K^+ a / B \rightarrow K^* a$ with pre-shutdown dataset (0.5 ab⁻¹) 0

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

[arxiv: 2201.06580]

KIT KCETA Colloquium

