

PALEOCCENE collaboration

Gabriela R. Araujo

May 4th 2023 Particle Physics Colloquium at the Karlsruher Institut für Technologie (KIT)

The mesoSPIM initiative

CEvNS: Coherent Elastic v-Nucleus Scattering

CEvNS detection described as "spotting a ghost". Coherent coll. Science (2017)

Why do we care about CEvNS?

- Distribution of nucleons in nuclei
- Supernova *v*s
- Nuclear reactor (flux)
 monitoring

X-ray: NASA/CXC/CfA/ M. Markevitch; Optical and lensing map: NASA/STScl, Magellan/U.Arizona/D. Clowe; Lensing map: ESO WF

X-ray: NASA/CXC/CfA/ M. Markevitch; Optical and lensing map: NASA/STScl, Magellan/U.Arizona/D. Clowe; Lensing map: ESO WF

Observations from the bullet cluster support the WIMP hypothesis**

(weakly interacting at most)

Non-luminous counterpart: most of the matter, not much interacting (gravitational interaction observed by the lensing)

Luminous gas: slowed

(**)This observation cannot be easily explained by other theories, such as the modified newtonian dynamics

X-ray: NASA/CXC/CfA/ M. Markevitch; Optical and lensing map: NASA/STScl, Magellan/U.Arizona/D. Clowe; Lensing map: ESO WF

WIMP Dark Matter: still some free parameter space to explore

X-ray: NASA/CXC/CfA/ M. Markevitch; Optical and lensing map: NASA/STScl, Magellan/U.Arizona/D. Clowe; Lensing map: ESO WF

WIMP Dark Matter: pushing down the sensitivity by increasing exposure

Experimental parameter space for the spin-independent interaction of WIMP with nucleons.

Exposure: Xenon experiments operating in underground labs increased from ~10kg to possibly 50000 kg with DARWIN/XLZD.

WIMP Dark Matter: pushing the sensitivity towards lower masses

Experimental parameter space for the spin-independent interaction of WIMP with nucleons.

Threshold (sub-keV E_{nr}): Cryogenic detectors at ~15 mK with transition edge sensors (TES). Energy depositions of ~keV correspond to temperature increase of ~uK (mOhm)

Low threshold & large "exposure" are keys to push sensitivity to WIMPs

Low threshold:

- Ability to measure low-energy nuclear recoils
- Access beyond "vanilla" medium-mass WIMP

Exposure:

- Increase target mass
- Increase measuring time

Paleo detectors can achieve large "exposure" by having a large "measuring time"

Low threshold:

- Ability to measure low-energy nuclear recoils
- Access beyond "vanilla" medium-mass WIMP

"Minerals Could Bear the Scars of Collisions With Dark Matter" geologyin.com

Exposure:

- Increase target mass
- Increase measuring time

Paleo detectors: Ancient (Gyr old) minerals as passive DM detectors

S. Baum et al, Phys. Lett. B (2020)

Microscopy can be used to readout these "scars of collisions" (tracks)

> Lattice damage Ionization+dislocation of atoms Eg from <u>S. Baum (UCLA 2023)</u>: Fission tracks imaged in Mica with TEM

Some rocks can preserve tracks for ~ Gyr time

"Minerals Could Bear the Scars of Collisions With Dark Matter" geologyin.com

Paleo detectors: Ancient (Gyr old) minerals as passive DM detectors

S. Baum et al, Phys. Lett. B (2020)

Paleo detectors Target: billion-year old minerals. Method: microscopy of tracks Output: events per track size

Image and count

Eg from <u>S. Baum</u> (<u>UCLA 2023</u>): Fission tracks imaged in Mica with TEM

Build spectrum

Target: billion-year old minerals. Method: microscopy of tracks Paleo detectors Output: events per track size \rightarrow Competitive sensitivity to WIMPs

Image and count

[Price&Walker '63]

Eg from S. Baum (UCLA 2023): Fission tracks imaged in Mica with TEM

Build spectrum

Projected sensitivity

Paleo
detectorsTarget: billion-year old minerals. Method: microscopy of tracks
Output: events per track size → Competitive sensitivity to WIMPs

Back to the big picture:

It has been hard to access the low-energy region: Excess observed in detectors designed for exploring this region

Excess of events observed in the low-energy region of several low-mass DM experiments, like CRESST*.

Lattice defects could move events into low energy regions Observed excess:

WIMP with nucleons.

Maybe "the excess" signature could become the signal?

Back to neutrinos:

Can we dig directly into the "neutrino fog" and detect their coherent scattering with nuclei?

Future very large DM detectors will start exploring this region (eg. DARWIN/XLZD*)

Back to neutrinos:

Can we dig directly into the "neutrino fog" and detect their coherent scattering with nuclei?

Future very large DM detectors will start exploring this region (eg. DARWIN/XLZD*)

Increasing "exposure":

Large flux of ~50 MeV neutrinos enables CEvNS detection

requires large flux & low threshold CEvNS detection

**where a >1.8 MeV neutrino can produce >MeV signals from e⁺e⁻ annihilation and neutron capture

Vo

XX

Vo

*J. P. Ochoa

 ν_e Erice 2022

CEvNS detection for nuclear reactor monitoring purposes

Monitoring v-flux from reactors allows for estimation of fissile material production and verification of non-proliferation agreements.

A treaty to "prevent the spread of nuclear weapons" and "further the goal of achieving nuclear disarmament "

Nuclear non-proliferation Treaty

21

CEvNS detection

To monitor a large number of reactors, we need a simple & small detector

Detector wish list:

- Reasonably cheap
- Small: allows moderate distance to reactor / overburden
- No cryogenics / HV / dedicated staff on-site
- Low threshold

~450 nuclear power reactors>200 nuclear research reactors

arxiv:1908.07113

(<< than the value for IBD)

Requirements: Detector

- Reasonably cheap
- Small: allows moderate distance to reactor / overburden
- No cryogenics / HV / dedicated staff on-site
- Low threshold

Requirements: Detector

- Reasonably cheap
- Small: allows moderate distance to reactor / overburden
- No cryogenics / HV / dedicated staff on-site
- Low threshold

Passive crystals

Signal

• Long lived

WIMP, *v*-induced defect/track

Readout

- Can be performed ex-situ or be easily taken in-situ
- Identification of low -energy signals
- Reasonably Cheap
- Fast scan/read-out of large quantities

microscopy

Requirements: Detector

- Reasonably cheap
- Small: allows moderate distance to reactor / overburden
- No cryogenics / HV / dedicated staff on-site
- Low threshold

Passive crystals

Signal

Long lived

WIMP, *v*-induced defect

Readout

- Can be performed ex-situ or be easily taken in-situ
- Identification of low -energy signals
- Reasonably Cheap
- Fast scan/read-out of large quantities

Quantum system that absorbs and re-emits light -> observable in optical wavelengths! 25

Requirements: Detector

- Reasonably cheap
- Small: allows moderate distance to reactor / overburden
- No cryogenics / HV / dedicated staff on-site
- Low threshold

Signal

Long lived

- Tamper-proof
- Distinguishable from y events

Color center (CC)

Readout

- Can be performed ex-situ or be easily taken in-situ
- Identification of low -energy signals
- **Reasonably Cheap**
- Fast scan/read-out of large quantities

Choose materials with no γ -induced CCs or with different γ -CC color

Y. Mossbacher et al (2019)

PALEOCCENE concept

Passive low-energy optical color center nuclear recoil

B. Cogswell, A. Goel, P. Huber

Anion displacement has a low threshold^{*}: Sensitivity to rare low-energy events

(*)stopping power for most ions is around 20–100 eV/nm -> E recoiling nucleus ~20–200 eV

First proposed by <u>B. Cogswell, A. Goel, P. Huber</u>.

Building upon R. Budnik et al arXiv:1705.03016

PALEOCCENE concept Passive low-energy optical color center nuclear recoil

First proposed by <u>B. Cogswell, A. Goel, P. Huber</u>.

SD coupling: target with net nuclear spins

Building upon R. Budnik et al arXiv:1705.03016

PALEOCCENE concept

Passive low-energy optical color center nuclear recoil

First proposed by <u>B. Cogswell, A. Goel, P. Huber</u>. More details in the collab. WP: (2203.05525) Building upon R. Budnik et al (arXiv:1705.03016)

Large scale light-sheet microscopy with the mesoSPIM

Nature methods (2019)

The mesoSPIM: the first to produce "volumetric images of centimeter-sized samples with near-isotropic resolution within minutes."

Main developers at:

Center for Microscopy and Image Analysis

Testing the paleoccene concept with the mesoSPIM

R&D i) Select a crystal

steps:

- Transparent insulator
- Low threshold for forming vacancies
- (...)*
- Color centers (CC) at suitable wavelengths

Testing the paleoccene concept with the mesoSPIM

R&D steps:

i) Select a crystal

- Transparent insulator
- Low threshold for forming vacancies
- (...)*
- Color centers (CC) at suitable wavelengths

ii)"Fake a Signal"

- Low energy neutrons mimic DM, *v* signals
- ... but large irradiation dosage produces a more clear signal

iii) Scan w. light-sheet

- Scan crystals before and after irradiation
- Use "blank" reference
- Understand color & distribution of CCs

CaF₂

Light-sheet microscopy of crystals

Blank samples: No clear signal above the background is observed

Irradiated sample yields clear fluorescence signal

detection objective

Comparing signal intensity and color

Comparing signal intensity and color

*VT14: neutron irradiated sample (which also saw ¥'s)

Upgrading the mesoSPIM for color center imaging

A new version of mesoSPIM will be soon released:

- Larger camera, smaller pixels
- Magnification up to 20x
- Smaller footprint & cost

Portable benchtop providing faster scans and larger resolution. Optimized for biological purposes but also for color center imaging for paleoccene

Upgraded mesoSPIM paper coming out soon!

Upgrading the mesoSPIM for color center imaging

A new version of mesoSPIM will be soon released:

- Larger camera, smaller pixels
- Magnification up to 20x
- Smaller footprint & cost

Portable benchtop providing faster scans and larger resolution. Optimized for biological purposes but also for color center imaging for paleoccene

Upgraded mesoSPIM paper coming out soon!

Pixel correlation in repeated scans

Track-like structure in repeated scans 2) 1)

Low threshold: Ability to measure low-energy nuclear recoils. Go beyond "vanilla" WIMP

composite DM

WIMP SD interaction

Exposure:

- Increase measuring time

DM sub-halo structure

- Increase target mass
- Increase v-flux (CEvNS)

volume + readout

Scalable passive

reactor *v*'s, tamper-proof non-proliferation monitor

Background suppression:

- radio-pure minerals (below ppb level of ²³⁸U)
- null or distinguishable response to EM background
- shielding against cosmic rays (deep underground rocks/lab)
- 3D-track reconstruction, vacancy number /track length, on/off reactor, vary targets + explore N² dependence

"Mineral Detection of Neutrinos and Dark Matter" 2301.07118

Next steps for LSM color center imaging

- Proton irradiation of crystals for full track imaging
- Pixel matching for neutron-induced color-centers
- Light-sheet (mesoSPIM) microscopy application in geology and paleo detectors.

a) Fission track dating example b) mesoSPIM crystal scan (surface and track-feature in the bulk)

Can we also get the best out of both for DM detection?

Meet the Paleoccene team

