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large surface/volume observatories .
& 4 powerful accelerators
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age universe lifetime top quark

4.4108s large surface/volume observatories 51025 s
obstervable visible with quarks
universe our own eyes <10m
8.8 10%m

~1°'000°000 000 000 000 000 000 000 000 meter
~ 0.000 000 000 000 000 000 01 meter

distance to _
galactic center distance
Earth-sun
distance light biological cell proton
travels in one year neutron
lifetime duration farthest human object lifetime lifetime
star supernova & GRB  from Earth (Voyager 1) atoms proton kaon (K*)

1013-10%¢ s 0.1-100s >310%s 1.210%s



Develop a model to describe how objects behave in this space and time



Develop a model to describe how objects behave in this space and time

Basic

Principles

FROM INTUITION

e.g. the locality principle:
all matter has the same set of constituents

e.g. the causality principle:

a future state depends only on the present state

e.g. the invariance principle:
space-time is homogeneous

FROM LONG-STANDING OBSERVATIONS
the wave-particle duality principle

the quantisation principle no obvious reason for

the cosmological principle these long-standing

the constant speed of light principle observations to be what
they are...

the uncertainty principle

the equivalence principle J



Develop a model to describe how objects behave in this space and time

MATHEMATICAL FRAMEWORKS HOW OBJECTS BEHAVE

Ba SIC @ General Relativity (for gravity)

Pri n Ci ples @ Quantum Mechanics + Special Relativity = Quantum Field Theory
(for electromagnetic, weak and strong forces)

FROM INTUITION Fundamental
e.g. the locality principle:

all matter has the same set of constituents Theo ries

e.g. the causality principle:
a future state depends only on the present state

e.g. the invariance principle:
space-time is homogeneous

FROM LONG-STANDING OBSERVATIONS
the wave-particle duality principle

the quantisation principle no obvious reason for

the cosmological principle these long-standing

the constant speed of light principle observations to be what
they are...

the uncertainty principle

the equivalence principle J



Develop a model to describe how objects behave in this space and time

MATHEMATICAL FRAMEWORKS HOW OBJECTS BEHAVE

FROM INTUITION Fundamental
Theories

Concrete
Models

FROM LONG-STANDING OBSERVATIONS
APPLY MATHEMATICAL FRAMEWORKS ON OBJECTS

Standard Model of Cosmology
Standard Model of Particle Physics

need to be valid into even the tiniest cracks of space and time
and for all energies or masses of the objects... even at the extremes
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~1°000°000 000 000 000 000 000 000 000 meter
~ (0.000 000 000 000 000 000 01 meter

observations how observations how
large objects small objects
behave in our behave in our
universe laboratories
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observations how observations how
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A century of scientific revolutions
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~ (0.000 000 000 000 000 000 01 meter

observations how observations how
large objects small objects
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communication World Wide Web

satelites A century of scientific revolutions ~ touchsereens

GPS

~1°000°000 000 000 000 000 000 000 000 meter
~ (0.000 000 000 000 000 000 01 meter

observations how production of particles and radiation observations how
arge objects nuclear diagnosis and medicine small objects
/ behave in our behave in our
universe laboratories

“Scientific curiosity which ends up in your pocket”
Rolf Heuer (previous Director General of CERN)
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The quest for understanding physics

— “Problems and Mysteries”

L=~ fu P e.g. Abundance of dark matter?

:ff}i; Abundance of matter over antimatter?

+Rgf V) What is the origin and engine for high-energy cosmic particles?
Dark energy for an accelerated expansion of the universe?
What caused (and stopped) inflation in the early universe?
Scale of things (why do the numbers miraculously match)?
Pattern of particle masses and mixings?
Dynamics of Electro-Weak symmetry breaking?

How do quarks and gluons give rise to properties of nuclei?...

15



The quest for understanding physics

“Problems and Mysteries”

= P e.g. Abundance of dark matter?

*fiigb; Abundance of matter over antimatter?

+Rgf V) What is the origin and engine for high-energy cosmic particles?
Dark energy for an accelerated expansion of the universe?
What caused (and stopped) inflation in the early universe?
Scale of things (why do the numbers miraculously match)?
Pattern of particle masses and mixings?
‘ Dynamics of Electro-Weak symmetry breaking?
oy How do quarks and gluons give rise to properties of nuclei?...

N \ Girs, -
A EiNsTEIN

Observations of new physics phenomena and/or deviations
from the Standard Models are expected to unlock concrete
ways to address these puzzling unknowns
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higher energy interactions

in the lab

. — .
rv"igva:'&,“rG" Ly F kﬁ‘)%ﬁ¢ﬁ“

S0 9L AY - -

higher energetic phenomena

in the universe
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RF cavities, high-field magnets, plasma wakefield acceleration

higher energy interactions
in the lab .. %

higher energetic phenomena
in the universe

computing and software challenge for Multi-Exabyte Data Infrastructures

18



Extending our models with new phenomena

(assuming our basic principles and theoretical frameworks hold)

1= -7\% F/w o -
‘ Al L;'—b)‘ +he " new
» T Yy P Phenomena
W RAVE s

connection
(coupling strength)
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Extending our models with new phenomena

(assuming our basic principles and theoretical frameworks hold)
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cover the whole parameter space = Planck scale
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Most recent European Strategies

the large ...

European Astroparticle

= Physics Strategy
APPEC 2017-2026

weblink

2017-2026 European
Astroparticle Physics Strategy

NuPECC
W CC Long Range Plan 2017

Perspectives
in Nuclear Physics

Long Range Plan 2017
Perspectives in Nuclear Physics

... the small

weblink

2020 UPDATE OF THE EUROPEAN STRATEGY
FOR PARTICLE PHYSICS

by the European Strategy Group

European §xrategy
Update

2020 Update of the European
Particle Physics Strategy
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http://www.nupecc.org/pub/lrp17/lrp2017.pdf
https://www.appec.org/roadmap
https://europeanstrategyupdate.web.cern.ch/

Most recent European Strategies

the large ... ... the connection ... ... the small
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2020 UPDATE OF THE EUROPEAN STRATEGY
FOR PARTICLE PHYSICS

by the European Strategy Group

NuPECC

W CC Long Range Plan 2017
Perspectives I
in Nuclear Physics P %

2017-2026 European Long Range Plan 2017 2020 Update of the European
Astroparticle Physics Strategy Perspectives in Nuclear Physics Particle Physics Strategy
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http://www.nupecc.org/pub/lrp17/lrp2017.pdf
https://www.appec.org/roadmap
https://europeanstrategyupdate.web.cern.ch/

our eyes on the sky



The cosmic frontier: Cosmic Microwave Background precision physics

Previous flagship Next generation “Dark Universe” flagship
impressive science >30 M spectroscopic redshifts with 0.001 accuracy up to z~2
to measure the acceleration of the universe

" Euclid (ESA)

Planck (ESA) : i :
completed : ¢ KN " i launch 2023

ESA: European Space Agency Properties of dark energy, dark matter and gravity



A variety of very high-energy particles from our universe

cosmic
particles

= =
o o [y =
| | (<) (@)
c - = )

E? Intensity [GeV m 2 s ! sr71]

H
2

H
2

10°
Energy [GeV]




A variety of very high-energy particles from our universe
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Similar cosmic energy density:
would they have
a common origin?
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y into the global
Multi-Messenger
Realm for Astronomy
to discover the sources
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Major Cosmic Particle Facilities in Europe

advance our major participation outside Europe: Pierre Auger Observatory, IceCube(-Gen2), ...

observatory in orbit

AMS-2

anti-matter
in cosmic
rays

Sunyel exep

observatory below surface

ANTARES to KM3NeT

n eutrmos 5

o
BAIKAL-GVD // IQ

H.E.S.S./MAGIC/VERITAS to CTA

high-energy gamma-rays

construction, partially operational construction, partially operational

construction, start observations >2023
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Gravitational Wave Facilities in Europe

Current flagships
Advanced & Plus upgrades up to 2035

3'd generation interferometer, beyond 2035
underground — triangle (10km arms) — cryogenic

increase precision, increase statistics, increase reach

on the ESFRI Roadmap (EU) (European Strategy Forum on Research Infrastructures)
complementary: LISA (ESA) to be launched around 2037

28



Gravitational Wave with the Einstein Telescope

Detection horizon for black-hole binaries

Years after the Big Bang .
-

|
400 thousand 0.1 billion 1 billion } billian [ 8 billion 13.8 billion

I Tt . EEE T T ]
” A

The Big Bang

NP : . o .
~EinsteinTel&scope - -

>
‘

: Second:generation.
- .
¥

-~
Present day

193[qo [esjuioucise
. 3SI14 40 uoneWIOY
Do, 3

Reionization

» Fully ionized

A

Fully ionized W@INELtralized
[ B

10
Credit: ALMA collaboration 1+Redshift

GW190521:
z=0.82

Will our basic principles and theoretical frameworks hold throughout the cosmic history?




our eyes on the invisible
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Major underground Facilities — shielding the visible

Boulby Underground
Laboratory, UK

Laboratoire Souterrain
de Modane, France

-‘g;?' Laboratori Nazionali

el Gran Su?‘mly

Laboratorio Subterraneo

Sandford Underground :

Research Facility, USA she Congromc:Spain Kamioka Observatory,
. Japan

Soudan Underground ’ .Yangyang Underground

Laboratory, USA » ~flaboratory, Korea
2 _

N\,
China JinPing Underground \“ jt’\-‘

Laboratory, China

y ol v . .. - -
! ~ g - ¢
image courtesy of Susana Cebridn, “Science goes underground” 31



Major underground Facilities in Europe — Dark Matter

ultimate low background
astroparticle physics
observatories

proposal

W o o

Boulby Underground
Laboratory, UK

Laboratoire Souterrain

XENON (1-10t) to DARWIN (50t)

Xenon
High-voltage [ . .Connection to cryogenics,
feedthrough & ) purification, data acquisition

array .

* TPC with
central dark
matter target

- Cathode

- Bottom
photosensor
array

(Lz0z puoAaq) yad spiemos |esodoud
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Major underground Facilities in Europe — Dark Matter

proposal

ultimate low background

astroparticle physics
observatories

Boulby Underground
Laboratory, UK

Dark Matter-Nucleon Og; [cm?]

Neutrmo Floor

10° 10° 1 10
M, [Tev/ c’]

reaching the “neutrino floor”

10?

where the neutrino backgrounds dominate

Luborotonre Souterrain

Xenon
High-voltage “...Connection to cryogenics,
feedthrough = purification, data acquisition

Top
photosensor...
array .

" Anode
Double wall |
cryostat - {1l .

~ TPC with
PTFE central dark
reflector matter target

- Cathode

- Bottom
photosensor
array

(£20T puoAaq) Yao spJiemoy jesodo.d
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Neutrino sector extends the Standard Model Ve

Because neutrinos oscillate, they have mass... but how to extend the Standard Model? '\{3

Is a neutrino its own anti-particle? . .
Deep Underground Neutrino Experiment

Is there CP violation in the leptonic
sector?

Sanford < : Fermilab
Underground - B o s "-'-.,\.{_
Re;e_arch 200 miles N R ‘

Facility

What is the absolute mass scale?

How does the neutrino mass
spectrum look like?

Measure the oscillation probabilities
of neutrinos and antineutrinos with
ultimate precision ' e o

e.g. at the Long-Baseline Neutrino Facility (LBNF)
with the DUNE experiment

Probabllity of detecting electron, muon and tau neutrinos

34



Neutrino beams in Japan and in the US

CERN’s Neutrino Platform in LBNF & DUNE (US), and in T2K (Japan)

DUNE @ LBNF BabyMIND @ TZK (near detector)

Prototype dual-phase Liquid-Argon TPC Prototype for Magnetised Iron Neutrino Detector

Within the next decade, we will know much more how to develop
the neutrino sector to extend the Standard Model

35



our eyes on direct discoveries
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Today’s Flagship: from LHC to HL-LHC

Current flagship (27km)

impressive programme up to 2040

conti .

t::::iuzd lnn'ovat'ions in experimental
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o point tf) seek new physics at the
ergy and intensity frontiers

2 — study Quark-Gluon Plasma formed in nu collisions
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system
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o>
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Today’s Flagship: from LHC to HL-LHC

ear collisions
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(HL-)LHC as a catalyser for dedicated experiments

Additional opportunities with high-energy proton collisions

Current flagship (27km)

impressive programme up to 2040

FASER

tors  emulsion+target

480m from ATLAS

2m long
1.5 m long

ermanen

spectrometer

paj|easul Suiaq

Long Lived Particles

Light & weakly coupling particles

Milli-charged particles

Magnetic Monopoles (MoEDAL)

MATHUSLA

100-300m from IP
PR

B
=
5
]
wo,

CODEX- b

pajeJisuowap Suiaq

oooooo

cccccccccc
nnnnnnnnnnnnnnnn

|esodoud
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Barrack D

UXA shield

E

CODEX-b

AN
)
|esodoud
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(HL-)LHC as a catalyser for dedicated experiments

Current flagship (27km)

impressive programme up to 2040

"HL-LHC@CERN

10y @ 14 TeV (3-4ab?) |

coupling strength = 108,08/ M ediator [GEV ]

a high-energy proton collider is a
catalyser for a unique portfolio of
complementary research

o
I

|
o
I

OMPLEMER

SHiP
/ NAG2++

NAG2++
NAG4++

KLEVER

|
—_
N
|

|
—_
T

REDTOP

| MATHUSLAI
v MilliQan !
L

---l

Planck scale

| | | [ [ I |
=21 =58 =g =5 3 9 15
mass of BSM state = log;om,[eV]

40



While running the (HL-)LHC: Accelerated Beams at CERN

The CERN accelerator complex and the LHC — protons from Booster only <0.1% to LHC

LHC

North Area

ISOLDE
61

SPS

PS
30%

HiRadMat

2011 [t

OO0

ELENA  AD

PsSB PS Booster

m 3 ISOI-DE ISOLDE Isotope Separator On Line Device
PS Proton Synchrotron
N EA East Experimental Area
' AD Antiproton Decelerator
N RIBs REX/ HIE SPS Super Proton Synchrotron
PP fastArea n_TOF  Neutron Time-of-Flight facility
n-ToF ; | LHC  Large Hadron Colider
m — NA North Experimental Area ~ Quantity of protons used in 2016 by each
\v‘// o P S Other uses, including accelerator studies (machine ﬁ ] o accelerator and experimental facility, shown as
//k - / development) l J apercentage of the number of protons sent by
n

v

LINAC2 the PS Booster

2005 (78 m)
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Kaon physics from NA62 to KLEVER @ SPS-CERN

During HL-LHC era

During LHC era
KLEVER Detector layout for K; — 70
A LAV 1821 AV 22-26 LKr
AFC\ LAV 1-12 LAV 13-17 i
S IH HIHI ‘‘‘‘‘ ===t T -
| X
IRC
. v i SAC
running Fv similar to NA62 but  cpv
S0m 105m 155m  hasically a new detector 241:5m
proposal
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Kaon physics from NA62 to KLEVER @ SPS-CERN

[ Min. flavor viol.
O ziz', LHT
[ Randall-Sundrum

| BR(x, — 2%v7) x 107" |

ex " oc Im ALy / My

AL +Ag | XIAY|
eneral NP o $
M,

e During HL-LHC era

During LHC era

Detector layout for K; — #0vv

A LAV 1821 LAV 22-26 LKr
AFC\ LAV 1-12 LAV 13-17 ‘
bl ___—"‘ :
. j B - #
4 R | Lol L AL ‘<_~ e e
) | \
IRC
B . v SAC
runnin < FV . .
g similar to NA62 but cpv

155m  hasically a new detector 2415m

proposal
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While running the (HL-)LHC: Accelerated Beams at CERN

Current flagship (27km)

impressive programme up to 2040
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SHiP
NAB2++  Npgo++

y . NAG4++ FTEVER

|
D
|
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>
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coupling strength = 108,08/ M ediator [GEV ]

~ DM _REDTOP
_12_ IﬁliVLR-’ TauFV
FASER EDM
CODEX-B
MATHUSLA
MilliQan
St o T N (U *
Planck scale
| | [ | [ T |
=21 =15 = =3 3 9 15

mass of BSM state = log;om,[eV]
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Future high-energy particle colliders

Essentially all problems of the Standard Model are related to the Higgs sector, hence the argument to built new colliders
dedicated to produce copiously Higgs bosons in order to map precisely its interactions with other particles.
An electron-positron Higgs factory is the highest-priority next collider.

. s F ™

+ L¢b% o
AR ST | window to

+ R -V(@) P new physics

Q‘*\{O\
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Future high-energy particle colliders

Essentially all problems of the Standard Model are related to the Higgs sector, hence the argument to built new colliders
dedicated to produce copiously Higgs bosons in order to map precisely its interactions with other particles.
An electron-positron Higgs factory is the highest-priority next collider.

Example

1--iF F* expected precision on

fN . 1:7_’)8; Az the measurement
of the W-H coupling

Yy kpa window to
new physics

~0.3%

In the search for answers to open questions, we discovered a great
complementarity among the science reach of different collider types.

the combined precision is much better than that of each individual collider

We need a coherent program allowing for a variety of future colliders
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Future flagship at the energy & precision frontier

Current flagship (27km) Future Circular Collider (FCC)
impressive programme up to 2040 big sister future ambition (100km), beyond 2040
attractive combination of precision & energy frontier
AL

4 2\

FCC- eh/hh@FE_E_@ [3. 5&{1&“&“]

e

(Ya-224 40f auo Ajuo) 4apijj03 yooa
10 sd| Z dwnssp siaquinu

4y @ M; (150ab ) :
i 1-2y @ 2xMw (10ab) H

| 3y @ 240 GeV (5ab?)
sy @2xm,(1.5ab7) §

ep—option with HL-LHC: LHeC
10y @ 1.2 TeV (1ab™!)
updated CDR 2007.14491

by around 2026, verify if it is feasible to plan for success
(techn. & adm. & financially & global governance)
potential alternatives pursued @ CERN: CLIC & muon collider 47



Sustainable Accelerating Structures



Basic structures of a particle accelerator

particle beam beam experiment beam
production preparation acceleration dump
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Basic structures of a particle accelerator

particle beam beam experiment
production preparation acceleration

cooling @ 2K

beam
dump
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Basic structures of a particle accelerator

particle beam beam experiment beam
production preparation acceleration dump
~50%

_ magnets ~10%
cooling @ 2K others ~35%

~5%

Typical power consumption for an electron-positron Higgs Factory
the highest priority next collider for particle physics

example FCC@250GeV
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Impact for the current designs of Higgs Factories

Linear colliders Circular colliders

@ ® o
P&c’ . Acc radiation
o™ Ny
o L)

ACC
s - s @

dump >99.9999% of  Fcc-ee@250 ~300 Mw  radiate away very quickly

the beam power ~2% of annual electricity the beam power

consumption in Belgium

about half of this is dumped or lost due to radiation

OBJECTIVE: develop accelerator technologies that recover the beam
energy with an impact of saving ~1% of Belgium’s electricity
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Impact for the current designs of Higgs Factories

Linear colliders Circular colliders

@ ® o
P~Cc’ . Ace radiation
o™ Ny
o L)

ACC
s - s @

dump >99.9999% of  Fcc-ee@250 ~300 Mw  radiate away very quickly

Energy consumption the beam power ~4% of annual electricity the beam power
is reducing in Europe, consumption in Belgium

not excluded with %

by 2050-2060 about half of this is dumped or lost due to radiation

OBJECTIVE: develop accelerator technologies that recover the beam
energy with an impact of saving ~2% of Belgium’s electricity
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Importance highlighted in the European Strategy for Particle Physics 2020

An electron-positron Higgs factory
is the highest-priority next collider.

The energy efficiency of present and future
accelerators [...] is and should remain an area
requiring constant attention.

A detailed plan for the [...] saving and re-use of
enerqy should be part of the approval process
for any major project.

European Strategy for Particle Physics 2020
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From Grid to Beam

RF power generation

GRID

cryogenics

Picture adopted from M. Seidel (IPAC 2022)

beam
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From Grid to Beam

GRID

power-inefficiency

RF power generation
efficiency ~30-60%

RF power demand
by detuned cavities
~ AP beam power
dumped
or
radiated
. beam
cryoge nIcs dissipated heat
performance ~1/Q,
~(300K-T)/T
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From Grid to Beam improve amplifier efficiency

e.g. solid state amplifiers for oscillating power demands

RF power generation recover the energy

Y . from the beam
efficiency ~30-60% e.g. ERL reaching

100% recover
G R I D RF power demand ’ Y
by detuned cavities

~ AP beam power
dealing with microphonics durgfea'
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novel technologies operate cavities at higher T & improve Q, of cavities

e.g. Nb;Sn from 2K to 4.4K = 3x less cooling power needed
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Impact of Energy Recovery
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The principle of Energy Recovery

e EEEETE

ACCELERATE
energy in cavities is given
to the particle beam
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to the particle beam
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The principle of Energy Recovery
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phase-shift
- .
ACCELERATE DECELERATE
energy in cavities is given energy of particle beam

to the particle beam goes back to cavities
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The principle of Energy Recovery
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The principle of Energy Recovery
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energy in cavities is given energy of particle beam
to the particle beam goes back to cavities

energy recovered to accelerate
@ the next particle beam
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The principle of Energy Recovery
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The principle of Energy Recovery
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The principle of Energy Recovery
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The principle of Energy Recovery

other beam for collisions

. @ beam brightness is
We”ment 10;7014 maintained from
Technology is proven in 2 . e the injector
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and lower beam power multiple turns towards higher energies
@ beam dump
phase-shift at low energy
= .
ACCELERATE DECELERATE
energy in cavities is given energy of particle beam
to the particle beam goes back to cavities

energy recovered to accelerate
@ the next particle beam
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Energy Recovery Linac (ERL) applications for HEP e*e colliders

This plot suggests that with
an ERL version of a Higgs
Factory one might reach

Y
o
o
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NOTE: several additional
challenges identified to realise
these ERL-based Higgs Factories
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Energy Recovery Linac (ERL) applications for HEP e*e colliders
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Thil can we dream to have an ERL—based Higgs Factory in the LHC tunnel
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an gRL-based Higgs

f synchrotron Radiation ~ 1/R

Power® R : radius of circular collider

te ider ~ x4
nin 27km yersus 100km e’¢€ colli
o)

Synchrotron Radiati

FCC-ee
versus '
__ umber of Higgse> ?

Several very challenging aspects are to be verified in these
initial thoughts, but it demonstrates the potential impact of

_based Higgs Factor

new technologies, and motivates R&D support for
sustainable accelerating systems to further explore



our eyes on the structure of things
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Hadrons & lons are made up of Quarks & Gluons

colour

confinement
coupling ~ 1
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The 50+ years success story of DIS

lepton (E)
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Discovery of quarks
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The 50+ years success story of DIS
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Why study this for another 50 years?

A
\69‘00 >

lepton (E)
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DIS is alive!

381 regqistrations for DIS2022




Electron-lon Collider (EIC)

World’s 15t polarized e-p/light-ion & 15t eA collider

User Group >1000 members: http://eicug.org

electron

3 .

sep=(29-140 Gev

KT 4
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Electron-lon Collider (EIC)

Unique in the DIS landscape
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Electron-lon Collider (EIC) improved gg->H @ LHC
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A future scope

For ep/eA physics, the 2030’ies will be
the decade of the EIC

The next ambition for the community will
be to enable ep/eA physics both at higher
luminosities and at higher energies
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From HERA onwards to high-energy proton beams

measurements of proton Parton Distribution Functions are vital to improve the precision
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The challenge

High-intensity electron beam
From HERA@DESY to LHeC@CERN

3 orders in magnitude in luminosity
1 order in magnitude in energy

beam current X beam energy
= beam power

LHeC ~ 1 GW beam power

equivalent to the power delivered by a nuclear power plant
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The challenge

High-intensity electron beam
From HERA@D

ep Facilities & Experiments:

- Past Colliders
—

10

10° |5 (GeV)

99



at high energies
electron-proton colliders provide
a General-Purpose experiment



Log(ep~>HX)

Collision energy above the threshold for EW/Higgs/Top

from mostly QCD-oriented physics to General-Purpose physics

DIS Higgs Production Cross Section

l EIC

cms energy /TeV

The real game change between
HERA and LHC/FCC

Compared to the LHC, these are reasonably
clean Higgs events with much less backgrounds

at these energies, interactions with all particles in
the Standard Model can be measured precisely
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Some physics highlights of the LHeC (ep/eA@LHC)

on several fronts comparable improvements between LHC = HL-LHC as for HL-LHC = LHeC

r ) [ w [
Higgs physics EW physics
w improvement wrt LH-LHC first
o | O% et time o Am,, down to 2 MeV (today at ~10 MeV)
Xo. etcer
s o Asin206,¢" to 0.00015 (same as LEP)

2,50

2.00

1/- Top quark physics
N o |V | precision better than 1% (today ~5%)
5 R “ | o top quark FCNC and y, W, Z couplings
DIS scattering cross sections Strong interaction physics
o PDFs extended in (Q2,x) by o o, precision of 0.1%
orders of magnitude o low-x: a new discovery frontier

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR) 103
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Empowering the FCC-hh program with the FCC-eh

Relative uncertainty
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Empowering the FCC-hh program with the FCC-eh

) Kinematic range Parton Distribution Functions
~5-7% uncertainty
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Empowering the FCC-hh program with the FCC-eh

Kinematic range Parton Distribution Functions

~5-7% uncertainty
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Hadrons & lons are made up of Quarks & Gluons

colour
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Heavy lon physics from RHIC & SPS to NICA & FAIR

Temperature, T (MeV)
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Heavy lon physics from RHIC & SPS to NICA & FAIR

Temperature, T (MeV)
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how matter and complexity emerge

evolution of our Universe
origin of the chemical elements

Nuclotron based lon CoII|der FaC|I|ty @ JINR

SIS100/300 @ FAIR
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~1°000°000 000 000 000 000 000 000 000 meter
~0.000 000 000 000 000 000 01 meter

observations how observations how 4
large objects small objects #

behave in our behave in our (&8
universe laboratories
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Building the future together

~1°000°000 000 000 000 000 000 000 000 meter
~0.000 000 000 000 000 000 01 meter

observations how observations how 4
large objects small objects #

behave in our behave in our {§
universe laboratories

With sustained capital investments in these future facilities,
we know that we must discover new physics phenomena to add to our standard models.
... if not, we might have to revisit our theoretical frameworks and/or our basic principles.

Thank you for your attention!

\ HIGH-ENERGY PHYSICS - A
RESEARCH CENTRE be 727 W o Jorgen.DHondt@vub.be
BRUXELLES BRUSSEL
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The future of ERL colliders

With stepping stones for innovations in technology
to boost our physics reach

2040-2050'ies
ERL Higg SFB%‘IO f;)[w ERAND

2020’ies

ST oo KM LONG |/

swpaq 143 Z

with high-power ERL
e*e Higgs Factory
(Z/W/H/top program)

wbaq 143 T

high-power ERL

high-power ERL = 1. P
demonstrated e
ERL application
electron cooling .

e beam in collision
(ep/eA @ LHC program)




very challenging

The future of ERL colliders

With stepping stones for innovations in technology
to boost our physics reach

2040-2050’ies
ERL Higg SFB%ZtO t;yw RN

the ultimate upgrade
of the LHC programme

2020’ies

C Y o0 KMLONG |

swpaq 143 Z

with high-power ERL
e*e Higgs Factory
(Z/W/H/top program)

wbaq 143 T

high-power ERL

high-power ERL Nahr | e beam in collision

demonstrated Lt (ep/eA @ LHC program)
ERL application the next major collider
electron cooling 115




