The effective track to new physics

Gauthier Durieux (CERN)

Particle physics colloquium – KIT – 27 Oct 2022

The particle physics landscape

Taking the SM to higher dimensions

- using established bricks (fields and symmetries)
- extension organised by relevance (dimension)
- including all deformations (theory space coverage)

Isolating patterns of new physics

array of sensitive observables

- precise SM-EFT predictions
- precise measurements
 - \rightarrow correlate deviations

SMEFT challenges

1. improved sensitivity (exploit powerful and complementary obs.)

2. more global picture (combine sectors)

3. precise data interpretation (include quantum corrections)

4. new-physics implications (map to models)

5. framework understanding (leverage amplitude techniques)

1. Improved sensitivity

Neural networks for SMEFT

- $\cdot tZ + X$ process in the three-lepton signal region
- · first discriminate $t\bar{t}Z$, tZj signals and backgrounds
- \cdot then SM vs. $(c_{tZ}, c_{tW}, c_{\phi q}^3)$ from reweighted sample

Gauthier Durieux – Particle physics colloquium – KIT – 27 Oct 2022

[CMS '21]

Gauthier Durieux – Particle physics colloquium – KIT – 27 Oct 2022

Ratios to cancel systematics $t\bar{t}V/t\bar{t}$

[Schulze, Soreq '16] [Mangano, Plehn, Reimitz, Schell, Shao '15]

	$\sigma(t\bar{t}H)[{\rm pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$rac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
$13 { m TeV}$	$0.475^{+5.79\%}_{-9.04\%}{}^{+3.33\%}_{-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
$100~{\rm TeV}$	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%}_{-2.02\%}{}^{+0.314\%}_{-0.147\%}$

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

Rare processes and high energies

[Dror, Farina, Salvioni, Serra '15] [Maltoni, Mantani, Mimasu '19] [El Faham, Maltoni, Mimasu, Zaro '21]

deviations from SM couplings lead to energy-growing effects

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

Top EW couplings at lepton colliders

Statistically optimal observables:

- · exploiting differential distributions
- · covering multidimensional parameter spaces
- · enhancing linear terms and EFT validity

 e^+ e^+ $e^ W^+$ $W^ W^-$

[GD, Matsedonskyi '18]

Impact on compositeness scenarios

· 1σ sensitivities · fully composite t_R ($\epsilon_t = 1$ in $y_t = \epsilon_t \epsilon_a g_*$)

· up to
$$\pm O(1)$$
 factors

Complementarity between bottom/top/Higgs measurements

Going beyond HL-LHC reach

2. More global picture

Fitting with degeneracies

- \cdot diagonalise the Gaussian covariance in SMEFT space
- · keep constrained eigenvectors, group operators by 'type'
- · $WW+WZ+4\ell+Zjj$ differential measurements

Fitting with degeneracies

- \cdot diagonalise the Gaussian covariance in SMEFT space
- \cdot keep constrained eigenvectors, group operators by 'type'
- · $WW+WZ+4\ell+Zjj$ differential measurements

Abolishing the signal-background distinction

- \cdot leptons+b's final state, spit into 35 signal regions
- \cdot contains *tth*, *ttZ*, *ttW*, *tZq*, *tHq*, diboson, etc.
- \cdot 16 top operator contributions to all of them

[CMS '20]

EW+Higgs+top

see also: [Ethier, Magni, Maltoni, Mantani, et al. '21]

· tension in various observables but no large deviation consistent overall

e.g. obs.
$$ttW m_{tt}\&y_{tt} p_T^{t-cha}$$

 χ^2/ndf 2 1.5 5

· largest correlations btw EW and Higgs, no significant degradation from top

$\mathsf{EW}{+}\mathsf{Higgs}{+}\mathsf{top}$

- · Higgs/top complementarity among C_{HG} , C_{tH} , C_{tG}
- in subset of 9 operators $C_{H\square}$, C_{HG} , C_{HW} , C_{HB} , C_{tG} , C_{tH} , C_{bH} , $C_{\tau H}$, $C_{\mu H}$
- · robust against $\bar{q}q\bar{t}t$ op.

Top+bottom

Top+bottom

Operators [8]

- top dipoles [3]
- top currents [3]
- · $b'_L b'_L \ell \ell$ [2]

Constraints

- \cdot $t\bar{t}$, $t\bar{t}\gamma$, $t\bar{t}Z$ rates
- · W helicity fractions
- $\cdot \ Z
 ightarrow b ar{b}$ (at tree level)
- $\cdot \ b
 ightarrow s\gamma, \ b
 ightarrow s\ell\ell \ (\texttt{flavio+wilson})$
- · B_s mixing, $b \rightarrow s \bar{\nu} \bar{\nu}$
- $_+$ future $e^+e^-
 ightarrow t \, ar{t} \, (\sigma, A_{
 m FB})$

Improvements from b

- \cdot mostly on $C_{uB},\,C^3_{arphi q}\,\,(b
 ightarrow s\gamma)$
- · not much in $C_{\varphi u}$
- none in C_{tW}, C_{tG}

3. Precise data interpretation

SMEFT at the loop level

 $\cdot pp \rightarrow ii (a\bar{a}a\bar{a})$ [Gao, Li, Wang, Zhu, Yuan '11] $\cdot pp \rightarrow t\bar{t} (q\bar{q}t\bar{t})$ [Shao, Li, Wang, Gao, Zhang, Zhu '11] $\cdot pp \rightarrow VV$ [Dixon, Kunszt, Signer '99] [Melia, Nason, Röntsch, Zanderighi '11] [Baglio, Dawson, Lewis '17, '18, '19] [Chiesa, Denner, Lang '18] EWPO (top) [Zhang, Greiner, Willenbrock '12] top decays [Zhang '14] [Boughezal, Chen, Petriello, Wiegand '19] top FCNCs UFO [Degrande, Maltoni, Wang, Zhang '14] [GD, Maltoni, Zhang '14] · $pp \rightarrow t\bar{t}$ (chromo-dipole) [Franzosi, Zhang '15] $\cdot h \rightarrow \gamma \gamma, VV, \gamma Z$ [Hartmann, Trott '15] [Ghezzi, Gomez-Ambrosio, Passarino, Uccirati '15] [Dawson, Giardino '18] [Dedes, Paraskevas, Rosiek, Suxho, Trifyllis '18] [Dawson, Giardino '18] [Dedes, Suxho, Trifyllis '19] $\cdot h \rightarrow f\bar{f}$ [Gauld, Pecjak, Scott '15, '16] [Cullen, Pecjak, Scott '19, '20] $\cdot pp \rightarrow tj$ [Zhang '16] [de Beurs, Laenen, Vreeswijk, Vryonidou '18] $\cdot pp \rightarrow t\bar{t}Z, gg \rightarrow ZH$ [Röntsch, Markus Schulze '14] [Bylund, Maltoni, Vryonidou, Zhang '16] $\cdot pp \rightarrow t\bar{t}H, gg \rightarrow Hi, HH$ [Maltoni, Vryonidou, Zhang '16] $\cdot pp \rightarrow HV$ [Degrande, Fuks, Mawatari, Mimasu, Sanz '16] [Alioli, Dekens, Girard, Mereghetti '18] $\cdot Z, W$ poles [Hartmann, Shepherd, Trott '16] [Dawson, Ismail, Giardino '18, '18, '19] $\cdot pp \rightarrow h$ [Grazzini, Ilnicka, Spira, Wiesemann '16] [Deutschmann, Duhr, Maltoni, Vryonidou '17] $\cdot pp \rightarrow tiZ, tih$ [Degrande, Maltoni, Mimasu, Vrvonidou, Zhang '18] · $pp \rightarrow jets$ (triple gluon) UFO [Hirshi, Maltoni, Tsinikos, Vryonidou '18] Higgs self-coupling [McCullough '13] [Gorbahn, Haisch '16] [Degrassi et al. '16, '17] [Bizon et al. '16] [Kribs et al. '16] [Maltoni, Pagani, Shivaji, Zhao '17] [Di Vita, GD, Grojean, Gu, Liu, Panico, Riembau, Vantalon '17] EW Higgs & WW (top) [Vryonidou, Zhang '18] [GD, Gu, Vryonidou, Zhang '18] [Boselli, Hunter, Mitov '18] $\cdot \text{ EW } pp \rightarrow t\overline{t} (ttZ.tth)$ [Martini, Schulze '19] [Martini, Pan, Schulze, Xiao '21] · all QCD and four-guarks UFO [Degrande, GD, Maltoni, Mimasu, Vryonidou, Zhang '20] · EW $pp \rightarrow \ell^+ \ell^-$ [Dawson, Giardino '21, '22] · EW QQQQ in $gg \rightarrow h, h \rightarrow bb, pp \rightarrow tth$ [Alasfar, de Blas, Gröber '22] · NNLO $pp \rightarrow Zh \rightarrow \ell^+ \ell^- b\bar{b}$ [Haisch, Scott, Wiesemann, Zanderighi, Zanoli '22] NNLO VBF [Asteriadis, Caola, Melnikov, Röntsch '22]

SMEFT at one loop: automation

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

$t\bar{t}Q\bar{Q}$ in Higgs processes

- · sensitivity in $gg \rightarrow h$, $h \rightarrow \gamma\gamma$, $pp \rightarrow t\bar{t}h$ comparable to $pp \rightarrow t\bar{t}t\bar{t}$ and $t\bar{t}b\bar{b}$
- · spoils the loop sensitivity to the Higgs self-coupling

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

Self-coupling in off-shell $gg \to 4\ell$

- · extra discriminating power in differential distributions
- · leveraged with matrix-element based observable

Gauthier Durieux – Particle physics colloquium – KIT – 27 Oct 2022

Correlations with single-Higgs couplings require two \sqrt{s} .

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

[McCullough '13]

[Degrassi et al. '16] [Bizon et al. '16]

[Degrassi et al. '17] [Kribs et al. '17] [Maltoni et al. '17] [Maltoni et al. '18]

[Degrassi, Vitti '19] [Degrassi et al. '21]

[Haisch, Koole '21]

Models with large δ_{h^3}/δ_{VV} ? [GD, McCullough, Salvioni '21, '22, '22] see also: [Di Luzio, Gröber, Spannowsky '17] [Gupta, Rzehak, Wells '13] [Falkowski, Rattazzi '19] [etc.] [Logan, Rentala '15] [Chala, Krause, Nardini '18]

Gegenbauer potentials $G_n^{(N-1)/2}(\cos \frac{h}{f})$ are radiatively stable for pseudo-Nambu-Goldstone bosons of $SO(N+1) \rightarrow SO(N)$.

Naturally features $\mathcal{O}(1\%)$ Higgs deviations,

but yields $\mathcal{O}(100\%)$ self-coupling modifications.

Models with large δ_{h^3}/δ_{VV} ?

[GD, McCullough, Salvioni '21, '22, '22] see also: [Di Luzio, Gröber, Spannowsky '17] [Gupta, Rzehak, Wells '13] [Falkowski, Rattazzi '19] [etc.] [Logan, Rentala '15] [Chala, Krause, Nardini '18]

Naturally features $\mathcal{O}(1\%)$ Higgs deviations,

but yields $\mathcal{O}(100\%)$ self-coupling modifications.

Models with large δ_{h^3}/δ_{VV} ?

[GD, McCullough, Salvioni '21, '22, '22] see also: [Di Luzio, Gröber, Spannowsky '17] [Gupta, Rzehak, Wells '13] [Falkowski, Rattazzi '19] [etc.] [Logan, Rentala '15] [Chala, Krause, Nardini '18]

Naturally features $\mathcal{O}(1\%)$ Higgs deviations,

but yields $\mathcal{O}(100\%)$ self-coupling modifications.

Top EW interactions in $pp \rightarrow t\bar{t}$

see also tth: [Kühn, Scharf, Uwer '13] and CPV tth: [Martini, Pan, Schulze, Xiao '21]

[Martini, Schulze '19]

Top EW interactions at lepton colliders

Top-Higgs interplay at lepton colliders

IS [GD, Gu, Vryonidou, Zhang '18] see also: [Jung, Lee, Perelló, Tian, Vos '20]

Higgs $@e^+e^-$ helps improving top coupling precision.

Higgs precision is however contaminated by top uncertainties. Top@ e^+e^- is needed to achieve the full potential of Higgs@ e^+e^- .

NLO in diboson+Higgs+top

[Ethier, Magni, Maltoni, Mantani, et al. '21]

NLO SMEFT in $t\bar{t}$, single top, $gg \rightarrow h$, hV, tth, $h \rightarrow bb$, diboson

5. Framework understanding

Going on-shell

construct amplitudes directly and recursively

bypass unphysical fields, operators, Lagrangians

avoid gauge and field-redefinition redundancies

e.g. (graviton Feynman i	ules [De Witt '67]			
	8*S				
	δφ _{μα} δφ _{*'*'} δφ _{*''λ''}				
. .	$\operatorname{Sym}\left[-\frac{1}{4}P_{3}(p \cdot p' \eta^{ss} \eta^{s\tau} \eta^{s\lambda}) - \frac{1}{4}\right]$	${}^{2}_{6}(p^{\sigma}p^{\tau}\eta^{\mu\nu}\eta^{\rho\lambda}) + \frac{1}{4}P_{3}(p \cdot p^{\prime}\eta^{\mu\sigma}\eta^{\tau\tau}\eta^{\rho\lambda}) + \frac{1}{2}P_{6}(p \cdot p^{\prime}\eta^{\mu\nu}\eta^{\tau\rho}\eta^{\tau\lambda}) + P_{3}(p^{\sigma}p^{\lambda}\eta^{\mu\nu}\eta^{\tau\rho})$			$(1, 1, 2, 1, 1, 1, 1)^2$
3 pt.	$-\frac{1}{2}P_{3}(p^{*}p^{'s}\eta^{*r}\eta^{s\lambda})+\frac{1}{2}P_{3}(p^{s}p^{'s}\eta^{s\lambda})$	$\eta^{\mu\sigma}\eta^{\nu\tau}$) + $\frac{1}{2}P_{6}(p^{s}p^{\lambda}\eta^{\mu\sigma}\eta^{\nu\tau})$ + $P_{6}(p^{\sigma}p^{\prime\lambda}\eta^{\tau\mu}\eta^{\nu\rho})$ + $P_{3}(p^{\sigma}p^{\prime\mu}\eta^{\tau\rho}\eta^{\lambda\rho})$	1/1 terms	VS.	([12] ³ /[23][31])
	8 ⁴ 5	$-P_{i}(p \cdot p' \eta^{*q} \eta^{*p} \eta^{\lambda p})],$			()
	δφμοδφ++++δφ++++++δφ++++++++++++++++++++				
	$Sym[-\frac{1}{6}P_6(p \cdot p'\eta^{sr}\eta^{\sigma\lambda}\eta^{s\lambda}) -$	$\frac{1}{2}P_{12}(p^{\sigma}p^{\tau}\eta^{s\sigma}\eta^{s\lambda}\eta^{*s}) - \frac{1}{4}P_{\theta}(p^{\sigma}p^{\prime}s\eta^{*\tau}\eta^{s\lambda}\eta^{*s}) + \frac{1}{4}P_{\theta}(p\cdot p^{\prime}\eta^{s\sigma}\eta^{*\tau}\eta^{s\lambda}\eta^{*s})$			
	$+\frac{1}{4}P_6(p \cdot p'\eta^{\mu\nu}\eta^{\sigma\tau}\eta^{\rho\mu}\eta^{\lambda\sigma})+\frac{1}{4}P_{12}$	$(p^{\sigma}p^{\tau}\eta^{s\sigma}\eta^{\rho_{1}}\eta^{\lambda_{s}}) + \frac{1}{2}P_{6}(p^{\sigma}p^{\prime\sigma}\eta^{\tau\tau}\eta^{\rho_{1}}\eta^{\lambda_{s}}) - \frac{1}{4}P_{6}(p \cdot p^{\prime}\eta^{s\sigma}\eta^{\tau\tau}\eta^{\rho_{1}}\eta^{\lambda_{s}})$			
	$+\frac{1}{4}P_{24}(p \cdot p' \eta^{\mu\nu} \eta^{r\rho} \eta^{r\lambda} \eta^{*s}) + \frac{1}{4}P_2$	$(p^{\sigma}p^{\tau}\eta^{s\sigma}\eta^{r\lambda}\eta^{s\delta}) + \frac{1}{2}P_{12}(p^{\sigma}p^{r\lambda}\eta^{s\sigma}\eta^{r\tau}\eta^{s\delta}) + \frac{1}{2}P_{21}(p^{\sigma}p^{r}p^{\eta}\eta^{r\lambda}\eta^{r\delta})$			
	$-\frac{1}{2}P_{12}(p \cdot p' \eta^{sg} \eta^{\tau\rho} \eta^{\lambda\mu} \eta^{\iotas}) - \frac{1}{2}P_1$	$(p^{\sigma}p'^{\mu}\eta^{\tau_{\beta}}\eta^{\lambda_{\beta}}\eta^{**}) + \frac{1}{2}P_{12}(p^{\sigma}p^{\sigma}\eta^{\tau\lambda}\eta^{\mu\nu}\eta^{**}) - \frac{1}{2}P_{2i}(p \cdot p'\eta^{\mu\nu}\eta^{\tau_{\beta}}\eta^{\lambda_{i}}\eta^{**})$	0050		
4 pt.	$-P_{12}(p^{s}p^{\tau}\eta^{s\rho}\eta^{\lambda_{1}}\eta^{s\rho})-P_{12}(p^{\rho}p$	$^{\lambda\eta^{*i}\eta^{*s}\eta^{\tau\mu})} - P_{24}(p_{\sigma}p'^{\rho}\eta^{*i}\eta^{*s}\eta^{*\lambda}) - P_{12}(p^{\sigma}p'^{i}\eta^{\lambda\sigma}\eta^{\tau\mu}\eta^{*s})$	2850 terms	VS.	$[12]^4 \langle 34 \rangle^4 / stu$
	$+P_{6}(p \cdot p' \eta^{r_{p}} \eta^{\lambda \sigma} \eta^{r_{i}} \eta^{s_{p}}) - P_{12}(p$	$p^{\rho}\eta^{\mu\nu}\eta^{\tau\iota}\eta^{\star\lambda}) - \frac{1}{2}P_{12}(p \cdot p'\eta^{\rho\rho}\eta^{\star\lambda}\eta^{\tau\iota}\eta^{\tau\epsilon}) - P_{12}(p^{\tau}p^{\rho}\eta^{\tau\lambda}\eta^{\mu\iota}\eta^{\tau\epsilon})$			
	$-P_6(p^sp'^i\eta^{\lambda\epsilon}\eta)$	$s_{\eta^{rq}} - P_{24}(p^r p^{\prime s} \eta^{\tau s} \eta^{s_1} \eta^{s_1} \eta^{s_1}) - P_{12}(p^r p^{\prime s} \eta^{\tau s} \eta^{\lambda_1} \eta^{s_2}) + 2P_6(p \cdot p^{\prime} \eta^{s s} \eta^{\tau s} \eta^{\lambda_1} \eta^{s_2})].$			

Recursive amplitude construction

- · loops cut into trees
 - + rational terms
- \cdot trees cut into trees
 - (e.g. with recursion relations)
 - + contact terms

$$\mathcal{M}^{\mathsf{tree}}(1,...k,...n) = \sum_{\mathsf{channels}} rac{\mathcal{M}_L^{\mathsf{tree}}(1,...k,P) \ \mathcal{M}_R^{\mathsf{tree}}(\tilde{P},k+1,...n)}{P^2 - m^2} + \mathcal{M}^{\mathsf{contact}}(1,...k,...n)$$

On-shell SMEFT

a. operator enumeration

[Shadmi, Weiss '18], [Ma, Shu, Xiao '19], [Falkowski '19], [GD, Machado '19], [Li, Ren, et al. '20, '20]

b. non-renormalisation, non-interference, anomalous dim.

[Cheung, Shen '15], [Azatov et al. '16], [Bern et al. '19, '20], [Jiang et al. '20], [Elias Miró et al. '20, '21], [Baratella et al. '20, '20, '21], [Accettulli Huber, De Angelis '21], [Delle Rose et al. '22], [Baratella '22], [Machado, Renner, Sutherland '22]

c. massive amplitude construction

[Arkani-Hamed, Huang, Huang '17], dim≤4: [Christensen, Field '18], [Bachu, Yelleshpur '19], [Liu, Yin '22], SMEFT: [Aoude, Machado '19], [GD, Kitahara, Shadmi, Weiss '19], [GD et al. '20], [Balkin et al. '21], [Dong, Ma, Shu, Zheng '21, '22], [De Angelis '22]

. . .

+ d. EFT double copy

a. Operator enumeration

Helicity spinors

As brackets

$$u_{i^+} = \begin{pmatrix} 0 \\ i \end{bmatrix}$$
, $u_{i^-} = \begin{pmatrix} i \\ 0 \end{pmatrix}$ for particle i

Rewritting momenta (and polarizations vectors)

$$p_{i}^{\mu}\sigma_{\mu}=i\rangle[i\qquad \left(\varepsilon_{i}^{\mu}\sigma_{\mu}=\frac{\zeta\rangle[i}{\sqrt{2}\langle\zeta i\rangle},\qquad \varepsilon_{i}^{\mu}\sigma_{\mu}=\frac{i\rangle[\zeta}{\sqrt{2}\langle i\zeta\rangle}\right)$$

Trivializing $p_i^2 = \langle ii \rangle [ii]/2 = 0$

$$\langle ii \rangle = \epsilon_{\alpha\beta} i \rangle^{\alpha} i \rangle^{\beta} = 0, \qquad [ii] = \epsilon^{\dot{\alpha}\dot{\beta}} i]_{\dot{\alpha}} i]_{\dot{\beta}} = 0$$

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

[Mangano, Parke '91] [Dreiner, Haber, Martin '08] [Helvang, Huang '13] [Dixon '13] [Schwartz '14] [Cheung '17] Little-group transformations leave p_i invariant

Little group includes U(1) for massless p_i

Spinors i], i pick up phases proportional $\pm 1/2$

The amplitude picks up a phase proportional to h_i

Massless three-point contact terms

fully determined by little-group covariance

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = g \begin{cases} [12]^{h_1 + h_2 - h_3} & [23]^{h_2 + h_3 - h_1} & [31]^{h_3 + h_1 - h_2} & \text{for } h_1 + h_2 + h_3 > 0\\ \langle 12 \rangle^{-h_1 - h_2 + h_3} \langle 23 \rangle^{-h_2 - h_3 + h_1} \langle 31 \rangle^{-h_3 - h_1 + h_2} & \text{for } h_1 + h_2 + h_3 < 0 \end{cases}$$

$$f^{+}f^{+}s \ [12]$$

$$v^{+}v^{+}s \ [12]^{2}$$

$$f^{+}f^{-}v^{+} \ [13]^{2}/[12] \qquad [g] = 1 - |h|$$

$$v^{+}v^{+}v^{-} \ [12]^{3}/[23][31]$$

$$t^{+}t^{+}t^{-}([12]^{3}/[23][31])^{2}$$

Massless higher-point contact terms

Multiple independent structures for given helicities

non-vanishing Lorentz invariants $(s_{ij}, \epsilon_{ijkl})$

solving · little-group constraints

momentum conservation

• Schouten identities e.g. [12][34] - [13][24] + [14][23] = 0

Construction

harmonics and Young tableaux
 [Henning, Melia '19]
 [Li, Ren, et al. '20, '20]

- twistors trivializing momentum conservation
- systematic algorithm and explicit construction [GD, Machado '19] [see also Accettulli Huber, De Angelis '21]

[Falkowski '19]

Massless applications

 \cdot SM+graviton operators up to dim-8:

 \cdot minimal dim. of operators contributing to any helicity amp.:

$$dim\{operator\} \ge n - \sum_{i} \max(0, \operatorname{ceil}\{|h_{i}| - 1\}) \\ + \sum_{i} |h_{i}| + 2 \max \begin{bmatrix} \{\sum_{h_{i} > 0} 2h_{i}\} \mod 2 \\ 2 \max_{h_{i} > 0} \{|h_{i}|\} - \sum_{h_{i} > 0} |h_{i}| \\ 2 \max_{h_{i} < 0} \{|h_{i}|\} - \sum_{h_{i} < 0} |h_{i}| \end{bmatrix}$$

 b. Non-renormalisation, non-interference, anomalous dimensions

Non-renormalisation

vanishing tree helicity amp. \Rightarrow vanishing one-loop divergences

define (anti)holomorphic weights $\vec{w} \equiv n \mp h$ renormalisable trees: $\vec{w}_{\text{reno}}^{\text{tree}} \ge 4$ for $n \ge 4$ (except for e.g. Yukawa amps) from cut: $\vec{w}_{EFT}^{loop} = \vec{w}_{EFT}^{tree} + \vec{w}_{reno}^{tree} - 4$ so $\widehat{W}_{\text{FET}}^{\text{loop}} \geq \widehat{W}_{\text{FET}}^{\text{tree}}$

		F^3	$F^2 \phi^2$	$F\psi^2\phi$	ψ^4	$\psi^2 \phi^3$	\bar{F}^3	$\bar{F}^2 \phi^2$	$\bar{F}\bar{\psi}^2\phi$	$\bar{\psi}^4$	$\bar{\psi}^2 \phi^3$	$\bar{\psi}^2 \psi^2$	$\bar{\psi}\psi\phi^2 D$	$\phi^4 D^2$	ϕ^6
\checkmark	(w, \bar{w})	(0, 6)	(2, 6)	(2, 6)	(2, 6)	(4, 6)	(6, 0)	(6, 2)	(6, 2)	(6, 2)	(6, 4)	(4, 4)	(4, 4)	(4, 4)	(6, 6)
F^3	(0, 6)			×	×	×			×	×	×	×	×	×	×
$F^2 \phi^2$	(2, 6)				×	×				×	×	×			×
$F\psi^2\phi$	(2, 6)									×				×	×
ψ^4	(2, 6)	×	×			×	×	×	×	×	×	y^2		×	×
$\psi^2 \phi^3$	(4, 6)	\times^*									y^2				×
\bar{F}^3	(6, 0)			×	×	×			×	×	×	×	×	×	×
$\bar{F}^2 \phi^2$	(6, 2)				×	×				×	×	×			×
$\bar{F}\bar{\psi}^2\phi$	(6, 2)				×									×	×
$\bar{\psi}^4$	(6, 2)	×	×	×	×	×	×	×			×	\bar{y}^2		×	×
$\bar{\psi}^2 \phi^3$	(6, 4)					\bar{y}^2	×*								×
$\overline{\psi}^2 \psi^2$	(4, 4)		×		\bar{y}^2	×		×		y^2	×			×	×
$\bar{\psi}\psi\phi^2 D$	(4, 4)														×
$\phi^4 D^2$	(4, 4)				×					×		×			×
ϕ^6	(6, 6)	×*		×	×		×*		×	×		×			

+ angular momentum selection rules

[Jiang, Shu, Xiao, Zheng '20]

Non-interference

massless tree four-point amplitudes involving transverse bosons do not overlap in helicity at dim-4 and dim-6

A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2
$\psi\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
$\phi\phi\phi\phi\phi$	0	0

interference mass- or loop- suppressed, recovered in the azimuthal angle of decay products or through extra radiation

Non-renormalisation at L > 1

 $\operatorname{length}(\mathcal{O}_i) < \operatorname{length}(\mathcal{O}_j) - L$

only maximal cut, between tree amplitudes, at minimal L order

	F^3	$\phi^2 F^2$	$F\phi\psi^2$	$D^2 \phi^4$	$D\phi^2\psi^2$	ψ^4	$\phi^3 \psi^2$	ϕ^6	
F^3		\times_1	(2)	\times_2	\times_2	\times_2	\times_3	\times_3	
$\phi^2 F^2$							(2)	\times_2	
$F\phi\psi^2$							\times_1	\times_3	
$D^2 \phi^4$							\times_1	\times_2	
$D\phi^2\psi^2$							\times_1	(3)	
ψ^4							(2)	(4)	
$\phi^3 \psi^2$								(2)	
ϕ^6]

Anomalous dimensions from cuts

Relate dilatation operator to S-matrix phase

$$e^{-i\pi D}F^* = SF^*$$
 form-factor $F \equiv \langle p_1, \dots p_n | \mathcal{O}(q) | 0 \rangle$
momentum influx $\hat{\mathcal{I}}$

So at one-loop,

c. Massive amplitude construction

Massive spin spinors

Two massless for one massive $p^i_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}} = q^i \rangle [q^i + k^i \rangle [k^i = i^J \rangle [i_J \qquad \text{with } k_i^2 = 0 = q_i^2, J = 1, 2$ $2k^i \cdot q^i = m_i^2$

Little group is now SO(3) \sim SU(2)

Spin *s* from 2s symmetrized spin 1/2

Bolded spinors with implicit symmetrization e.g. $\langle 1^{I}3^{J}\rangle\langle 2^{K}3^{J'}\rangle + (J \leftrightarrow J') \rightarrow \langle \mathbf{13}\rangle\langle \mathbf{23}\rangle$

Spin quantisation axis unspecified / little-group covariance

$$\begin{array}{l} \textit{ffs} \ [12], \ \langle 12 \rangle \\ \textit{vvs} \ \langle 12 \rangle^2, \ \langle 12 \rangle [12], \ [12]^2 \\ \textit{ssv} \ [3(1-2)3) \equiv [3(p_1-p_2)3) \\ \textit{ffv} \ \langle 13 \rangle \langle 23 \rangle, \ \langle 13 \rangle [23], \ [13] \langle 23 \rangle, \ [13] [23] \end{array}$$

. . .

Massive three-points

Counting from angular momentum
number of irreps in the spin addition: [Costa, Penedones, Poland, Rychkov '11]
$$(2s_1 + 1)(2s_2 + 1) - p(p + 1) \quad \text{with} \quad \begin{cases} p \equiv \max\{0, s_1 + s_2 - s_3\}\\ s_1 \le s_2 \le s_3 \end{cases}$$

Construction by correcting a massless-like ansatz

[GD, Kitahara, Machado, Shadmi, Weiss '20]

$$(\mathbf{12})^{s_1+s_2-\tilde{s}_3} \ (\mathbf{23})^{-s_1+s_2+\tilde{s}_3} \ (\mathbf{13})^{s_1-s_2+\tilde{s}_3} \ [\mathbf{3}(\mathbf{1}-\mathbf{2})\mathbf{3}\rangle^{s_3-\tilde{s}_3}$$

$$\begin{array}{ll} \text{with} & (\boldsymbol{ij})^k \equiv \text{ any } \langle \boldsymbol{ij} \rangle^{k-l} [\boldsymbol{ij}]^l & \text{ for } l=0,...,k \\ & s_1 \leq s_2 \leq s_3 \\ & \tilde{s}_3 \equiv s_3 - \max\{0,s_3-s_2-s_1\} \end{array}$$

removing occurrences of

 $\epsilon(\varepsilon_1, \varepsilon_2, \varepsilon_3, p_1 + p_2 + p_3)$

$$m_1\langle 12 \rangle \langle 13 \rangle [23] + m_2 \langle 12 \rangle [13] \langle 23 \rangle + m_3 [12] \langle 13 \rangle \langle 23 \rangle$$

= $m_1 [12] [13] \langle 23 \rangle + m_2 [12] \langle 13 \rangle [23] + m_3 \langle 12 \rangle [13] [23]$

	s_1 s_2 s_3 $n^{3-\text{pt}}$ n_{rel}	spinor structures)
Macciva	0 0 0 1	constant	
	0 0 1 1 0 1 5	[3(1-2)3)	
	0 0 2 1	$[3(1-2)3)^2$	
	0 0 3 1	$[3(1-2)3)^3$	
C	0 1/2 1/2 2	([23], (23))	
Counti	0 1/2 3/2 2	$[3(1-2)3 angle\otimes([23],\langle23 angle)$	
	0 1/2 5/2 2	$[3(1-2)3)^2 \otimes ([23], (23))$	
nur	0 1 1 3	$([23]^2, (23)[23], (23)^2)$	land Rychkov '11]
nui	0 1 2 3	$[{f 3}({f 1}-{f 2}){f 3})\otimes ([{f 2}{f 3}]^2,\langle {f 2}{f 3}\rangle [{f 2}{f 3}],\langle {f 2}{f 3} angle^2)$	land, Rycincov II]
	0 1 3 3	$[3(1-2)3)^2 \otimes ([23]^2, (23)[23], (23)^2)$	- 1
	0 3/2 3/2 4	$([23]^3, (23)[23]^2, (23)^2[23], (23)^3) = 111.315$	⊢ <i>s</i> ₃ }
	0 3/2 5/2 4	$(3(1-2)3) \otimes ([23]^3, (23)[23]^2, (23)^2[23], (23)^3)$	-
	0 2 2 5	$([23]^4, \langle 23 \rangle [23]^3, \langle 23 \rangle^2 [23]^2, \langle 23 \rangle^3 [23], \langle 23 \rangle^4)$	
	0 2 3 5	$[3(1-2)3\rangle\otimes([23]^4,\langle23\rangle[23]^3,\langle23\rangle^2[23]^2,\langle23\rangle^3[23],\langle23\rangle^4)$	
	0 5/2 5/2 6	$([23]^5, (23)[23]^4, (23)^2[23]^3, (23)^3[23]^2, (23)^4[23], (23)^5)$	
	0 3 3 7	$([23]^6, \langle 23 \rangle [23]^5, \langle 23 \rangle ^2 [23]^4, \langle 23 \rangle ^3 [23]^3, \langle 23 \rangle ^4 [23]^2, \langle 23 \rangle ^5 [23], \langle 23 \rangle ^6)$	
	1/2 1/2 1 4	$([23], (23)) \otimes ([13], (13))$	
Constr	1/2 1/2 2 4	$[3(1-2)3 angle\otimes([23],\langle23 angle)\otimes([13],\langle13 angle)$	(itahara, Machado,
CONSU	1/2 1/2 3 4	$([13], (13)) \land ([3(1-2)3)^2 \otimes ([23], (23)) \otimes ([13], (13)) \land ([13], (13))$	Ebadimi Wales 201
	1/2 1 3/2 6	$([23]^2, (23)[23], (23)^2) \otimes ([13], (13))$	phaumi, weiss 20]
	1/2 1 5/2 6	$[3(1-2)3)\otimes([23]^2,\langle23\rangle[23],\langle23\rangle^2)\otimes([13],\langle13\rangle)$	
	1/2 3/2 2 8	$([23]^3, \langle 23 \rangle [23]^2, \langle 23 \rangle^2 [23], \langle 23 \rangle^3) \otimes ([13], \langle 13 \rangle)$	
(10	1/2 3/2 3 8	$[3(1-2)3\rangle\otimes([23]^3,\langle23\rangle[23]^2,\langle23\rangle^2[23],\langle23\rangle^3)\otimes([13],\langle13\rangle)$	
(12	1/2 2 5/2 10	$([23]^4, \langle 23 \rangle [23]^3, \langle 23 \rangle ^2 [23]^2, \langle 23 \rangle ^3 [23], \langle 23 \rangle ^4) \otimes ([13], \langle 13 \rangle)$	
	1/2 5/2 3 12	$([23]^5, \langle 23 \rangle [23]^4, \langle 23 \rangle^2 [23]^3, \langle 23 \rangle^3 [23]^2, \langle 23 \rangle^4 [23], \langle 23 \rangle^5) \otimes ([13], \langle 13 \rangle)$	
	1 1 1 7 1	$([12], \langle 12 \rangle) \otimes ([23], \langle 23 \rangle) \otimes ([13], \langle 13 \rangle)$	
	1 1 2 9	$([23]^2, \langle 23 \rangle [23], \langle 23 \rangle^2) \otimes ([13]^2, \langle 13 \rangle [13], \langle 13 \rangle^2)$	
•.	1 1 3 9	$ 3(1-2)3\rangle\otimes(23 ^2,\langle23\rangle 23 ,\langle23\rangle^2)\otimes(13 ^2,\langle13\rangle 13 ,\langle13\rangle^2)$	
wit	1 3/2 3/2 10 2	$([12], (12)) \otimes ([23]^2, (23)[23], (23)^2) \otimes ([13], (13))$	
	1 3/2 5/2 12	$([23]^{\circ}, \langle 23 \rangle [23]^{\circ}, \langle 23 \rangle^{\circ} [23], \langle 23 \rangle^{\circ}) \otimes ([13]^{\circ}, \langle 13 \rangle [13], \langle 13 \rangle^{\circ})$	
	$1 \ 2 \ 2 \ 13 \ 3$	$([12], (12)) \otimes ([23]^{\circ}, (23)[23]^{2}, (23)^{2}[23], (23)^{\circ}) \otimes ([13], (13))$	
		$([23]^4, (23)[23]^5, (23)^2[23]^2, (23)^4[23], (23)^4) \otimes ([13]^2, (13)[13], (13)^2)$	
	1 5/2 5/2 16 4	$([12], (12)) \otimes ([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13], (13))$	
		$(12) \otimes ([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23]^{\circ}, (23)^{\circ}[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13], (13))$	
	3/23/2214 4	$([12], (12)) \otimes ([23]^{-}, (23)[23], (23)^{-}) \otimes ([13]^{-}, (13)[13], (13)^{-})$ $([20]^{3}, (20)[20]^{2}, (20)^{2}[20], (20)^{3}, (20)[20]^{2}, (20)^{2}[20], (20)^{3})$	
	3/2 3/2 3 10	$([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13]^{\circ}, (13)[13]^{\circ}, (13)^{\circ}[13], (13)^{\circ})$	
	3/2 2 5/2 18 6	$([12], (12)) \otimes ([23]^{\circ}, (23)[23]^{\circ}, (23)^{\circ}[23], (23)^{\circ}) \otimes ([13]^{\circ}, (13)[13], (13)^{\circ})$	
rem	3/2 3/2 3 22 8 ([12]	$(12) \otimes ([23], (23)[23], (23)[23], (23)[23], (23)[23], (23)] \otimes ([13], (13)[13], (13)]$	$+ p_2 + p_3)$
	2 2 2 19 8	$([12], (12/[12], (12/)) \otimes ([23], (23/[23], (23/)) \otimes ([13], (13/[13], (13/)))$ (19) $\otimes ([23]^2, (23/[23]^2, (23/[23], (23/2))) \otimes ([13]^2, (13/[13]^2, (13/[23], (13/2)))$,
	2 2 3 23 9 ([12]	$(12/) \otimes ([23], (23/[23], (23/[23], (23/)) \otimes ([13], (13/[13], (13/[13], (13/)))$ 2 (13) (13) (13) (13) (13) (13) (13) (13)	
	$2 \ 0/2 \ 0/2 \ 24 \ 12 \ ([12])$, $14/[12]$, $12/[3]$, $123/[3]$, $123/[23]$, $123/[23]$, $123/[23]$, $123/[3]$, $13/$	1
	$2 \ 3 \ 3 \ 29 \ 10 \ ([12]^{-}, (12)^{-})$	/[12], (12), (13	1
	2 2 2 27 27 ([12]3 /12\[12]2	/[12], (13)/[13], (1	
	5 5 5 5 21 ([12] , (12)[12]	, \12/ [12], \12/) \([20], \23/[20], \23/[23], \23/) \(\(\(13), \13/[13], \13/[13], \13/[13], \13/))	J

[GD, Kitahara, Machado, Shadmi, Weiss '20]

Massive higher-points

e.g. $W+W+W-W$ reduct $\frac{1}{10 + 9}$	$\begin{array}{c c} & (0000) \\ \hline & (0000) \\ \hline & (+000) \\ \hline \\ & (++00) \\ \hline \\ & (+-00) \\ \hline \\ & 0 \\ & (0000) \\ & (+000) \\ & (++00) \\ & (+-00) \\ \hline \end{array}$	constant [121), [131] [1231] → [1231] - (1231) [12] [12] 12, [131]/2(32)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \sum_{23}^{-} + \tilde{s}_{24}) $
e.g. $W^+W^+W^-W$ remov redund $W^{\text{ress}} \xrightarrow{4 \to 3} 3$ $f_{fss} \xrightarrow{4} 4$ $g_{fss} \xrightarrow{4} 4$ g_{f	3 (0000) (+000) (+000) 4 (++00) (+-00) (+000) (+000) (+000) (++00) (+-00)	$\begin{array}{c} [121\rangle, [131\rangle \\ [1231] \rightarrow [1231] - (1231) \\ [12] \\ [12] \\ [132] \\ [132] \\ [12] \\ [132] \\ [12] \\ (12) \\ [12] \\ (12) \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= $_{23} + \tilde{s}_{24})$
e.g. $W^+W^+W^-W$ remov remov redund $\frac{ffss}{16} = 4$ $\frac{1}{1000} = 9$ $\frac{1}{1000} = 9$ $\frac{1}{1000} = 9$ $\frac{1}{1000} = 10$ $\frac{1}{1000} = 10$	$\begin{array}{ccc} & (++00) \\ (+-00) \\ \hline \\ 0 & (0000) \\ (+000) \\ (++00) \\ (++00) \\ (+-00) \\ \end{array}$	[12] [132) 12 [132)	$3 \frac{-2}{2} \frac{514}{6} \frac{5}{6}$	$(z_{3} + \tilde{s}_{24})$
remov redund $vvss 10 \rightarrow 9$ 9 $ffvs 14 \rightarrow 12$ 12 redund $vvvs 35 \rightarrow 27$ 27	(0000) (+000) (++00) (+-00)	12, [131)[232)		,
remov redund $vevs 35 \rightarrow 27$ 27	(± -00)	$[12][132\rangle$ $[12]^2$	1 4,4 4 6 2 6	
remov redund $vers 35 \rightarrow 27$ 27	(+-00)	$ 132\rangle^2 \rightarrow 132\rangle^2 - \langle 132 ^2$	$2 \rightarrow 1$ 8	-invariants
remov redund $\frac{ffff = 18}{vvvs = 35 \rightarrow 27} = 27$	$\begin{array}{c} 2 & (++00) \\ (+-00) \\ (+++0) \\ (+-+0) \\ (+-+0) \end{array}$	$\begin{array}{c} (12) \{ (313), (323) \\ (13) (23) \\ (13) [23] \\ (12) (3123) \rightarrow \varphi \\ (13) [312) \end{array}$	2 = 6 2 = 5 2 = 6 $2 \rightarrow 0 = 8$ 4 = 7	
vvvs $35 \rightarrow 27$ 2	$\begin{array}{ccc} 6 & (++++) \\ & (++) \\ & (+++-) \end{array}$	$\begin{array}{c c} [12][34], [13][24] \\ [12](34) \\ [12][324\rangle \end{array}$	2 6 6 6 8 7	
-	$\begin{array}{ccc} 7 & (0000) \\ & (+000) \\ & (++00) \\ & (+-00) \\ & (+++0) \\ & (++-0) \end{array}$	$\begin{array}{c} [12][343\rangle\langle 12\rangle, [13][242\rangle\langle 13\rangle, [23][141\rangle\langle 23\rangle\\ & [12][13](23)\\ [12]^2[3](33), [323\rangle\}\\ & [13][132\rangle\langle 23\rangle\\ & [12][132\rangle\langle 23\rangle\\ & [12]^{2}[3](23)\rightarrow\phi\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	appending sitive powers
spinor vvff 46→38 30	6 (00++) (00+-) (0-++)	$\begin{array}{c} (12) \times \{ [12] [34], [13] [24] \} \\ (14) (231] [23], (24) (132] [13] \\ (12) [34] (241] \rightarrow (12) [34] ((241]/m_1 - (142]/m_2) \end{array}$	$2 5 2 6 4 \rightarrow 2 7$	_
se [De A	(0+++) (0++-) (++++) (++++) (++) (++)	$\begin{array}{c} (132]\times \{ 12 34 , 13 24 \}\\ (14) \{12 23 \\ 122 ^2 314\\ [12]\times \{121 34 , 13 24 \}\\ (1231) [23] 24] \rightarrow \wp\\ [14] [132) (23) \rightarrow [14] [132) (23) - [24] [231) (13) \end{array}$	$\begin{array}{cccc} 4 & 7 \\ 8 & 6 \\ 4 & 8 \\ 2 & 7 \\ 4 \rightarrow 0 & 9 \\ 2 & 7 \\ 4 \rightarrow 2 & 8 \end{array}$	ns map to local operators
and stripped cont from Hilbert [Chang, Chen, I	$\begin{array}{ccc} 1 & (0000) \\ & (+000) \\ & (++00) \\ & (+-00) \\ & (+++0) \\ & (++-0) \end{array}$	$ \begin{array}{l} (12[34], (13)[24]) \times (12)(34), (13)(24)) \\ (12[34], (13)[24]) \times (142)(34) \rightarrow \cdots \\ (12[34], (13)[24]) \times (12)(34) \\ (13)[14](23)(24) \\ (12][34], (13)[24]) \times (23)[34) \\ (12][24], (13)[24]) \times (23)[34) \\ (12]^{24}, (12)[24]) \times (23)[34] \\ (12]^{24}, (12)[24]) \times (23)[34] \\ (12]^{24}, (12)[24]) \times (23)[34] \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}, (12)^{24}) \\ (12)^{24}, $	1 $3 \rightarrow 6$ 12 6 12 6 12 8 8 $3 \rightarrow 32$ $3 \rightarrow 32$ 3	 bins≤1

Gauthier Durieux - Particle physics colloquium - KIT - 27 Oct 2022

EW symmetry from perturbative unitarity [GD, Kitahara, Shadmi, Weiss '19]

[Llewellyn-Smith '73] [Joglekar '73] [Conwall et al. '73, '74]

as for the SM in the '70

Massive \rightarrow massless

high-energy limit / unbolding

 $\begin{array}{l} \cdot \text{ choice for the decomposition } p^{\mu} = (E, p \ \hat{n}) = k^{\mu} + q^{\mu}: \\ k^{\mu} = \frac{E + p}{2}(1, + \hat{n}), \qquad q^{\mu} = \frac{E - p}{2}(1, - \hat{n}) \\ \rightarrow \text{ spin quantization axis } k^{\mu} - q^{\mu} \sim (1, \ \hat{n}) \rightsquigarrow \text{ helicity} \\ \rightarrow k], k\rangle \sim \sqrt{E} \quad \text{and} \quad q], q\rangle \sim m/\sqrt{E} \end{array}$

· massless limit: un-bolding + $\mathcal{O}(m)$ e.g. $\langle \mathbf{13} \rangle \langle \mathbf{23} \rangle \rightarrow \langle \mathbf{13} \rangle \langle \mathbf{23} \rangle + \mathcal{O}(m)$ $\langle \mathbf{13} \rangle [\mathbf{23}] \rightarrow \langle \mathbf{1p_32} \rangle + \mathcal{O}(m)$

$\mathsf{Massive} \gets \mathsf{massless}$

[Balkin, GD, Kitahara, Shadmi, Weiss '21]

little-group covariantisation from the leading term / bolding

d. EFT double copy

EFT double copy

×	BAS	NLSM	ΥM
BAS	BAS	NLSM	ΥM
NLSM		sGal	BI
ΥM			GR

EFTs allowed as inputs? EFTs obtained as outputs?

 $\begin{array}{l} \mbox{Colour-Kinematics (CK)} \\ c^{adj} \cdot P \cdot n^{adj} \longrightarrow \tilde{n}^{adj} \cdot P \cdot n^{adj} \\ \mbox{composition rules for } c^{adj}_{hd}(col, kin) \\ \mbox{[Carrasco, Rodina, Yin, Zekioglu '19, '21]} \end{array}$

Kawai-Lewellen-Tye (KLT) $c^{tr} \cdot A \longrightarrow \tilde{A} \otimes A$ bootstrap equations for \otimes_{hd} , A_{hd}

[Chi, Elvang, Herderschee, Jones, Paranjape '21]

 $\underbrace{ \begin{array}{c} \mathsf{Numerator seeds} \\ \mathsf{simpler building blocks for } c_{\mathsf{hd}}^{\mathsf{adj}}(\mathsf{col},\mathsf{kin}) \\ \mathsf{relation to } \otimes_{\mathsf{hd}}, A_{\mathsf{hd}} \end{array} } } \int \\ \end{array} } \\$

The effective track to new physics

SMEFT could identify small correlated deviations in an array of observables.

A global approach preserves the systematic theory-space coverage and attacks new-physics from all fronts.

Precise EFT predictions yield new sensitivities and sharpen potential new-physics patterns.

Model interpretations locate landmarks in the explored territory.

Amplitude techniques contribute to improving the theory understanding of EFTs.