CLASSICAL BLACK HOLE SCATTERING FROM A WORLDLINE QFT

Jan Plefka

Humboldt University Berlin

Based on joint work with

Gustav Uhre Jakobsen, Gustav Mogull, Benjamin Sauer, Jan Steinhoff (AEI)

2010:02865, JHEP 02 (2021) 048 2101.12688, PRL 126 (2021) 20 2106.10256, PRL 128 (2022) 1 2109.04465, JHEP 01 (2022) 027 2201.07778, PRL 128 (2022) 14 2207.00569

KIT Particle Physics Colloquium, 07/22

Particle Physics: Paradigmatic experiment is Scattering in Colliders Theory: Relativistic Quantum Field Theory

Gravity: Gravitational wave emission in Black Hole and Neutron Star encounters now routinely measured in LIGO-Virgo-Karga GW detectors

Theory: Needs perturbative Solution of classical gravitational two-body problem: Apply perturbative QFT techniques!

GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-Karga Collaboration

GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Binary mergers of black holes (BHs) and neutron stars (NS)

Measurement of binary parameters Masses, Spins, Distance

LVG collaboration arXiv:2111.03606

• 3rd generation of GW observatories (Einstein Telescope; Advanced LIGO, LISA) to start in 2030's.

• Highly increased sensitivity expected: Need for high precision theory predictions

Astrophysics:

Fundamental physics:

- Black hole formation & evolution
- Neutron star properties: Equation of state, strong interacting matter
- Multi-messenger astronomy
- New astrophysical sources of GW
- Precision tests of (strong field) GR
- New physics signals? Modifications of GR,
- Higher curvature terms, Dark Matter...

THE GENERAL RELATIVISTIC 2-BODY PROBLEM

As in Newtonian case has either **bound** or **unbound** orbits.

Inspiral of 2 BHs or NSs:Virial-thm: $\frac{GM}{r} \sim v^2$ post-Newtonian (PN) expansion:

Weak field expansion:

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa \, h_{\mu\nu}$$

Scattering of 2 BHs or NSs: Weak field (G), exact in v post-Newtonian (PM) expansion

THE POST NEWTONIAN EXPANSION

Effective (conservative) action known up to 5PN order:

1PN:

4PN: [Damour, Jaranowski, Schaefer (2016); Blanchet, Bohe, Faye (2015)]
5PN: [Bini, Damour, Geralico (2019); Foffa (2017); Porto, Rothstein, Sturani (2019]
Partial results at 6PN...

POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS

Conservative non-spinning 2-body dynamics:

		0PN	1PN	2PN	3PN	4 P 1	N	5PN		Integration complexity
OPM [Einstein]	1	V ²	V ⁴	V ⁶	V ⁸	V ¹⁰)	V ¹²	•••	
1PM [Westpfahl]		G/r [Newton]	G v²/r _[EIH]	G v⁴/r	G v⁰/r	G v ^a	³/r	G v¹⁰/r	•••	~ tree-leve
2PM [many]			G² 1/r²	G ² v ² /r ²	G ² v ⁴ /r ²	G² v ⁶	∂/r²	G ² v ⁸ /r ²	•••	~ 1-loop
3PM Bern,Cheung,Roibar	n,Shen, Solon,Z	Zeng][Kälin, Liu,	, Porto][Di Vecc	G ³ 1/r ³ hia, Heissenberg	G ³ v ² /r ³ g, Russo,Venezia	G ³ V ⁶	∂⁄r³	G ³ v ⁸ /r ³	•••	~ 2-loop
Bjerrum-Bohr,Vanho 4PM	pve,Damgaard][PM st	ogull,JP,Sauer] G ⁴ 1/r ⁴	G ⁴ v ² /r ⁴		G ⁴ v ⁶ /r ⁴		~ 3-loop			
Bern,Parra-Martinez	z,Roiban,Ruf,Sh	en,Solon,Zeng]	[Dlapa,Källin,Li	u,Porto]				♠		
								1:		1
I		:	:	:	:	P	N s	state-of	f-the-art	

THE POST-MINKOWSKIAN EXPANSION

THE GENERAL REALTIVISTIC TWO BO u_1 , d_2 , v_1 , v_2 , v_1 , v_2 , v_1 , v_2 , v_1 , v_2 , v_2 , v_1 , v_2 , v_2 , v_1 , v_1 , v_2 , v_1 , v_2 , v_1 , NAL APPROACH

Point-particle approximation for BHs (or NSs)

$$S = -\sum_{i=1}^{2} \int d\tau_i \sqrt{g_{\mu\nu}} \dot{x}_i^{\mu}(\tau_i) \dot{x}_i^{\nu}(\tau_i) + \frac{1}{16\pi G} \int d^4x \sqrt{-g}R + S_{g.f.}$$
Point particle Bulk gravity & gauge

1) Equations of motion:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} = \frac{\kappa^2}{8}T_{\mu\nu}$$

 $\ddot{x}_{i}^{\mu} + \Gamma^{\mu}{}_{\nu\rho}\dot{x}_{i}^{\nu}\dot{x}_{i}^{\rho} = 0$

2) Solve iteratively in $\kappa = \sqrt{32\pi G}$ $g_{\mu\nu} = \eta_{\mu\nu} + \sum_{\nu} \kappa^n h^{(n)}_{\mu\nu}(x)$ emitted radiation

$$x_{i}^{\mu}(\tau) = b_{i}^{\mu} + v_{i}^{\mu} \tau + \sum_{n=1}^{\infty} \kappa^{n} z_{i}^{\mu(n)}(\tau)$$

straight line: "in" state deflections

3) Construct observables Far field waveform: $\lim_{r \to \infty} h_{\mu\nu} = \frac{f_{\mu\nu}(t-r,\theta,\varphi)}{r} + \mathcal{O}(\frac{1}{r^2})$ "Impulse" (change in momentum): $\Delta p_i^{\mu} = m_i \dot{x}_i^{\mu} \Big|_{\tau=-\infty}^{\tau=+\infty} = \int d\tau \, \ddot{x}_i^{\mu}(\tau)$

USE OF QUANTUM FIELD THEORY TECHNIQUES FOR CLASSICAL 2-BODY PROBLEM

1) Effective world-line field theory:

[Källin,Porto,Dlapa][Mougiakos,Riva,Vernizzi]

Construct effective action:

Solve e.oms for $x_i(\tau)$:

$$e^{\frac{i}{\hbar}S_{\text{eff}}[\boldsymbol{x}_i]} = \int [Dh_{\mu\nu}]e^{\frac{i}{\hbar}(S_{pp}+S_G)}$$
$$\frac{\delta S_{\text{eff}}[\boldsymbol{x}_i]}{\delta \boldsymbol{x}_i} = 0$$

2) Scattering amplitudes:

[Bern, Cheung, Roiban, Solon, Parra-Martinex, Ruf, Zeng] [Bjerrum-Bohr, Damgaard, Vanhove, Cristo [DiVecchia, Heissenberg, Russo, Venneziano] [Kosower, Maybee, O'Connell, Vines]

Scalar fields as avatars of BHs & NSs:

- + Modern on-shell techniques:
- Non-trivial classical limit
- Opaque relation to observables

$$\mathcal{M} = k^{2} \mathcal{M}^{(0)} + k^{4} \mathcal{M}^{(1)} + \dots$$

$$(P \mathcal{M}^{(n)} = \begin{array}{c} (P \mathcal{M}^{(n)} + k^{4} \mathcal{M}^{(n)} + \dots \\ P \mathcal{M}^{(n)} = \begin{array}{c} P \mathcal{M}^{(n)} + P \mathcal{M}^{(n$$

3) World line quantum field theory: Best of 1) & 2) [Jakobsen, Mogull, JP, Steinhoff] Philosophy: Focus on observables (here one-point functions @ tree-level Use 1) but also path integrate over $x_i(\tau)$!

USING QFT TECHNIQUES TO SOME CLASSICAL FIELD EQUATIONS

COUSIDER SCALAR FIELD THY AS PROXY:

$$SI(\phi; \alpha] = \frac{1}{2} \left(d^{4}x \left[(\partial_{\mu} \phi)^{2} + m^{2} d^{2} \right] + S_{14}m \left[\phi_{1} \alpha \right] \right) \qquad (2) \quad Physical Source or backed Repubble
GOAL: (PERTURBATIVE) SOLUTION OF E.O.M.:
$$\frac{SSI(\phi, \alpha]}{\delta \phi} \Big|_{\phi=d_{CLASS}(K)} = O
(\phi=d_{CLASS}(K))$$

$$(\Delta FI: Generative Function AL)$$

$$e^{\frac{1}{6}} W[J] = \int [D\phi] e^{\chi}p \left\{ \frac{1}{2} SI(\phi; \alpha] + \frac{1}{6} \int d^{4}x J(x) \phi(x) \right\}
OLE - POINT FUNCTION $\left(\hat{\phi}_{\mu}(x) \right)_{N=OUT} = \frac{SW[J]}{\delta J(x)} \Big|_{J=0}$

$$\frac{EFFECTIVE ACTION:}{(LEGENORE - TRANSTRIM)} \quad Segn \left[\phi] = \frac{1}{2} \int d^{4}x J(x) \phi(x) - W[J] \right]$$$$$$

() EFFECTIVE E.O.M. ARE SOLVED
BY ONE-POINT FUNCTION:
$$\frac{SSythil}{Sd(M)} = ()$$

$$\frac{()}{Sd(M)} = ($$

ONE-POINT FULCTION & E.O.M.

IN-IN (SCHWINGER - KELD 42H) FORMALISM [Galley, Tiglio] [Jordan] IN-OUT (STANDARD) FORMALISM YIELDS (QUILW) = (0(QUILK)) BUT WANT $\langle \hat{\varphi}_{\mu}(\lambda) \rangle_{\mu = 1N} := \langle 0 | \hat{\varphi}_{\mu}(\lambda) | 0 \rangle_{\mu} = \langle 0 | \hat{\mathcal{U}}(-\infty, \varepsilon) \hat{\varphi}_{I}(\varepsilon, \tilde{\chi}) \hat{\mathcal{U}}(\varepsilon, -\infty) | 0 \rangle$ NEED TWO TIME EVOLUTION OPERATORS => DOUBLE FIELDS IN PATH-INTEGRAL $O_{\overline{h}}^{\overline{h}} \mathbb{V}[\overline{J}_{1}, \overline{J}_{2}] = \langle O | \widehat{U}_{\overline{J}_{2}}(-\infty, \infty) \widehat{U}_{\overline{J}_{1}}(\infty, -\infty) | 0 \rangle$ $= \int \mathcal{D}\phi_{1}\mathcal{D}\phi_{2} \exp\left\{\frac{i}{\hbar}\left(S[\phi_{1}]-S[\phi_{2}]+\int d^{4}x \, \mathcal{J}_{1}(x)\phi_{1}(x)-\mathcal{J}_{1}(x)\phi_{2}(x)\right)\right\}$

BOUNDARY CONDITIONS:

 $\left\langle \oint_{4} (x) \right\rangle_{N-1N}$ > $\frac{SW[J_1, J_2]}{SJ_1(x)}$

KELDYSH BASIS
$$\phi_{+} = \frac{1}{d}(\phi_{1} + \phi_{2})$$
 $\phi_{-} = \phi_{1} - \phi_{2}$
THIS YIELDS $(SAME FOR J_{\pm})$

 $e^{\frac{1}{5}W[5_{4},5_{-}]} = \int D\phi_{t} D\phi_{-} e_{xp} \left\{ \frac{i}{5} \left(S[\phi_{t} + \frac{1}{2}\phi_{-}] - S[\phi_{t} - \frac{1}{2}\phi_{-}] + \int d^{4}x(5_{t}\phi_{-} + 5_{-}\phi_{t}) \right) \right\}$

PROPAGATOR MATRIX FROM FREG PART:

$$\Rightarrow D^{ab}(x,y) = {}^{t} \begin{pmatrix} 0 \\ D_{vot}(x,y) \end{pmatrix} = D^{adv}(x,y) \end{pmatrix} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ}; E)^{2} \cdot h^{2}} D^{adv}(h) = \bullet + \bullet = \frac{1}{(h^{\circ};$$

[Goldberger,Rothstein] [Porto,Källin] [Foffa,Sturani]

$$S_{p} = -\sum_{i=1}^{2} u_{i} \int dz_{i} \sqrt{g_{\mu\nu} \chi_{i}^{\mu} \chi_{i}^{\nu}}$$

BETTER: WTRODULE ENBEIN C(2):

O MODEL BHS/NSS AS POINT PARTICLES !

$$S_{p} = -\frac{m}{2} \int dz \left(e^{-1} g_{\mu\nu} \times \frac{\mu}{2} \times e^{-1} \right)$$

COUPLE TO GRAVITY $S_{G} = \frac{2}{k^{2}} \int d^{4} \times \sqrt{-g} R + S_{g,l}$

WORLDLINE EFFECTIVE FIELD THEORY

ALGEBRAIC ED.L. YIELD $c^2 = g_{\mu} \overset{\mu}{\times} \overset{\nu}{\times} \overset{\nu}{} \Rightarrow PROPER TIME GAUGE <math>Q = l \langle z \rangle \overset{2}{\times} \overset{2}{\times} l.$ **ULCUSION OF FINITE SIZE/TIDAL EFFECTS** $S_p = - \frac{M}{2} \int dz (g_{\mu\nu} \overset{\nu}{\times} \overset{\nu}{\times} \overset{\nu}{} + C_1 R \overset{2}{\times} + C_2 R_{\mu\nu} \overset{\nu}{\times} \overset{\nu}{\times} \overset{\nu}{} + C_{g^2} (R_{\mu\alpha\nu\beta} \overset{\nu}{\times} \overset{\nu}{\times} \overset{\nu}{})^2 + C_{g^2} (R_{\mu\alpha\nu\beta} \overset{\nu}{\times} \overset{\nu}{\times} \overset{\nu}{})^2 + \dots$

WEAR GRAVITATIONAL FIGLD

WORLDLING (2FT: FLOCTORTS GRANTON & WORLDLING
OBJECTIVE: FOCUS OU OBJECUARGES ? [Jakobsen, Moguli, J. R.Steinhoff]

$$S = -2m_{PL}^{2} \int d^{4}x J_{9}R - \sum_{i} \frac{m_{i}}{2} \int dt_{i}g_{uv} \dot{x}_{i}^{*} \dot{x}_{i}^{*}$$

 $S = -2m_{PL}^{2} \int d^{4}x J_{9}R - \sum_{i} \frac{m_{i}}{2} \int dt_{i}g_{uv} \dot{x}_{i}^{*} \dot{x}_{i}^{*}$
 $Graviton propagator in de Donder gauge
 $m_{environ}^{*} \sigma = i \frac{p_{uvipor}}{(k^{2}+ic)^{2}-k^{2}}$
 $P_{uvipor} = N_{ucp}N_{ojv} - \frac{1}{2}N_{uv}N_{por}$
 $Norkdlive fluctuation propagator:
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:$
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:$
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:$
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:$
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$
 $Vorkdlive fluctuation propagator:$
 $z^{\mu} - \frac{1}{v} = -\frac{1}{m} \frac{\eta^{\mu\nu}}{(w+ic)^{2}}$$$$$$$

Worldline Interactions ENERGE FROM $h_{\mu\nu} [X(z)] \dot{X}(z) \dot{X}(z)$ with $X_i^{\mu}(T_i) = b_i^{\mu} + T_i V_i^{\mu} + Z_i^{\mu}(T_i)$ IN MOMENTUM SPACE $= -im \kappa e^{ih \cdot b} \delta(h \cdot v) V^{\mu} V^{\nu}$ = m K e^{ih·b} $\xi(h\cdot v + co)(2cv V^{(m} S^{v)}_{p} + V^{(m} V^{v} k_{p}))$ $\sum_{k=1}^{n} \frac{z^{k}(\omega_{1})}{z^{k}(\omega_{2})} = \cdots \qquad \text{and} \quad \text{light } \nabla \qquad \cdots \qquad \sum_{k=1}^{d} \frac{z^{k}}{z^{k}}$ TREE LEVEL WORT GRAPHS YIELD LOOP-LEVEL FEYNMAN INTEGRALS $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \int d^{4} \pi_{1} \int d\omega \quad S(\omega) = S(q, v_{1}) S(q, v_{2}) \quad \int d^{4} \pi_{1} S(\pi_{1}, v_{1}) \dots$ 1- LOOP

$$\begin{array}{c|c} \hline & \mathsf{ImPULSE:} & \mathsf{CHAUGE} & \mathsf{OF} & \mathsf{MOUGNTUM} & & \mathsf{OD} \\ & & & \mathsf{O} \\ & & \mathsf{OP}_{i}^{\mathsf{M}} = \mathsf{Mi} & \mathsf{X}(\tau) & \left| \begin{matrix} \tau : \mathsf{O} \\ z : \mathsf{O} \\ \tau : \mathsf{O} \\ z : \mathsf{O} \\ z$$

て

$$\chi^{\mu}_{,[z]} = b_{,+}^{\mu} v_{,z}^{\mu} z + \left(dw e \left(\frac{z_{,w}^{\mu}}{z_{,w}^{\mu}} \right) \right)_{wQPT}$$

MOMENTUM DEFLECTION (IMPULSE) @ 3PM ORDER:

1) Test body diagrams (geodesic motion in Schwarzschild background):

[Jakobsen,Mogull,JP,Sauer]

computation!

2) Comparable mass diagrams (i0 prescription relevant for red propagators):

Integral family (with retarded propagators!)

$$\int d^{d}r d^{d}r = \frac{\delta(r_{1}, V_{2}) \delta(r_{2}, V_{1})}{(r_{1}V_{1} + r_{1}E)^{u_{1}}(r_{1}V_{2} + r_{1}E)^{u_{2}}((r_{1}+r_{2}-q)^{v_{1}} + r_{1}Esgn(r_{1}r_{2}-q))^{u_{3}}(r_{1}^{2})^{u_{4}}(r_{1}^{2})^{u_{4}}(r_{1}r_{2}-q)^{v_{4}})^{u_{5}}((r_{1}-r_{2})^{v_{6}}(r_{1}-r_{2})^{v_{6}})^{u_{5}}}$$

$$octive wold lie prop. \quad active growite propagates. \qquad 26$$

RESULT IMPULSE @ 3PM ORDER:

Scattering angle:

 $\frac{\theta}{\Gamma} = \frac{GM}{|b|} \frac{2(2\gamma^2 - 1)}{\gamma^2 - 1} + \left(\frac{GM}{|b|}\right)^2 \frac{3\pi(5\gamma^2 - 1)}{4(\gamma^2 - 1)} + \left(\frac{GM}{|b|}\right)^2 \frac{3\pi(5$

$1 q_2 \uparrow$ ergauge-fixe $\Delta p_{1}^{\mu} = p_{\infty} \sin \theta \frac{b^{\mu}}{|b|} + (\cos \theta - 1)^{1} \frac{m_{1}m_{2}}{1E^{2}} \frac{1}{|b|} \frac{m_{1}m_{2}}{1E^{2}} \frac{1}{|b|} \frac{m_{1}m_{2}}{|b|} \frac{1}{|b|} \frac{1}{|b|} \frac{m_{1}m_{2}}{|b|} \frac{1}{|b|} \frac{1}{|b|} \frac{1}{|b|} \frac{m_{1}m_{2}}{|b|} \frac{1}{|b|} \frac{1}{|b|$ $(\dot{m}_2)v$ $(\gamma m_2 + m_1)v_2^{\mu}$ he **g** st contribu =152h tassiciah $(\{ (a) \})$ Mensettalkete 72 Mar de Steleneter The

1PM Consuss fixed Finsteiner HUMPer the Worldhnee Bremsstrahlung at Radiated⁸4 LA COMPANY AND COMPANY AND COMPANY AS BOOM AS THE OUTPON

 $G_{2}^{2}m_{1}^{2}m_{2}^{2}\pi^{2}v$ result from an insertion of the operator \mathcal{O} in the particulation of a graviton of integral and dividing by \mathcal{Z}_{WQFTF} . Moving the property and \mathcal{O} is the space for the graviton $h_{\mu\mu}(k)$ and energy space for the \mathcal{O} is \mathcal{O} in the space for the \mathcal{O} is \mathcal{O} . 2^{--} (b) hor these waveforms functions million in the provide the manual of the provide the providet the provide the providet the providet the providet $210\gamma^{6}1 - 552$ centers with the total and the terrest of the produce person with $e_1 =$ 1 Same time time time time time time the second second time time the second sec an man and the second and a technical and the second second and the second sec XXX FIG. 1. the wire and the state bisbed with an alter of the state the integral mathecint and a state in the interview with the state of $C_{R^2} \left(\mathbb{R}^{\#}_{\mu \alpha \nu \beta} \dot{X}^{\alpha} \dot{X}^{\alpha} \right)$ hole 1 diagram (a) portation in the other segment in the second of the s ing graviton is contracted with a function of the distribution Q with $R_{\mu}E_{j}eld = The grave <math>-\frac{1}{2}\eta_{\mu}The decomposition of the second sec$ teensorg. = gravitational scatteringuoliside offassion anasgiaxitation offassion teensor. $16(\gamma^2 - 1)^{3/2}$

kitatioen sesteting of the phassive objects m FIG. 11. The three diagrams contribut with k outgoing

FAR FIELD WAVEFORM @ NLO

[Jakobsen,Mogull,JP,Steinhoff]

Sum on diagrams with an outgoing graviton. Integrate on internal lines:

$$\langle h_{uv}(h) \rangle = \frac{q_{i}}{q_{v}} + q_{v} + q$$

8

/

first computed by [Kovacs, Thorne `75] in 4 long papers D

Performing tiere integrals yields fine-domain Woreden: MDED

$$\frac{f^{(2)}}{m_1 m_2} = \frac{\hat{e}_1 \cdot N}{\sqrt{b^2 + T^2}} - \frac{b \cdot N}{b^2} \left(1 + \frac{T}{\sqrt{b^2 + T^2}} \right) + \frac{2M^{ij}}{\Delta(G)} \left[\frac{(G_0 + \alpha' G_1)A^{ij} - (G_1 + \alpha' G_2)B^{ij}}{\sqrt{G(\alpha)}} \right]_{\alpha=0}^{\alpha=0}$$

Integrated waveform

$$\frac{f^{(2)}(u = 4 \infty) - f^{(2)}(u = -\infty)}{W_{1} W_{2}} = \frac{4(2\chi^{2} - 1) \xi \cdot v_{1} (2 \cdot 5 \cdot \xi \cdot 5 \cdot v_{1} - 5 \cdot \xi \cdot v_{1})}{b^{2} \sqrt{3^{4} - 1} (g \cdot v_{1})^{2}} + 1 (g \cdot v_{1})^{2}}$$

$$\chi = v_{1} \cdot v_{2} \quad b = b_{2} - b_{1} \quad g = (1, \hat{\chi}) \quad \xi = (1, \hat{\chi}) \quad \xi = g \text{ for izer function}$$

PUTTING SPIN ON THE WORLD-LINE

- **Traditional approach:**
 - Spin tensor $S_i^{\mu
 u}(\tau)$ & co-moving frame $\Lambda_i^{A\,\mu}(\tau)$

Eoms: $\frac{Dp^{\nu}}{D\tau}$

$$\dot{Y} + \frac{1}{2}S^{\mu\rho}R_{\mu\rho\nu\kappa}\dot{x}^{\kappa} = 0$$
 $\frac{DS^{\mu\nu}}{D\tau} + 2\dot{x}^{[\mu}p^{\nu]} = 0$

[Matthisson-Papapetrou-Dixon]

Freedom of imposing a Spin-Supplementary Condition:

$$p_{\mu} S^{\mu\nu} = 0$$

$$\Leftrightarrow Q_{\alpha} \psi_{\alpha} = 0$$

Susy = SSC:

Our approach: Spinning super-particle

[Howe,Penati,Pernici,Townsend]

N=2 SUPERPARTICLE IN CURVED SPACE = KERR-BLACK HOLE

In curved space-time SUSY only preserved up to N=2 (= spin 1 particle):

$$S_{swopFT} \int dz \sum_{i=1}^{2} \left[-\frac{w}{a} q_{FV} \dot{x}_{i}^{V} \dot{x}_{i}^{V} + i \bar{q}_{ia} \frac{D q_{i}^{a}}{Dz} + \frac{1}{2w} R_{abcd} \bar{q}_{i}^{a} q_{i}^{b} \bar{q}_{i}^{c} q_{i}^{d} + \frac{C_{F}}{2w} R_{aFbv} \dot{x}_{i}^{\mu} \dot{x}_{i}^{\nu} \bar{q}_{i}^{a} q_{i}^{b} \bar{q}_{i}^{c} q_{i}^{c} \bar{q}_{i}^{c} \bar{q}_{i}$$

Integrate out $z_i^{\mu}, \psi_i^{\prime a}, \bar{\psi}_i^{\prime a}$ perturbatively!

[Jakobsen,Mogull,JP,Steinhoff]

Graviton propagator

 $k = i \frac{P_{\mu\nu}; p\sigma}{(r^{\circ} + i\epsilon)^{2} - \tilde{r}^{2}}$

Worldline interactions

Worldline fluctuation propagator:

POST-MINKOWSKIAN SCATTERING PRECISSION RACE

WQFT	VQFT WEFT Worldline effective theory					Amps Sca	ttering amplitu	des	HEFT Heavy BH effective theory				
[us]		[Källin,Por [Riva,Vern	to,Dlapa, izzi,Mou	,Cho,Liu,. giakakos]	.]]	[Bern,Roiban,Shen,Parra-Martinez,Ruf,] [Di Vecchia,Veneziano,Heissenberg,Russo] [Solon,Cheung,][Huang,][Guevera,Ochirov [Bjerrum-Bohr,Damgaard,Vanhove,][Johanss [Kosower,O'Connell,Maybee,Cristofoli,Gonzc			[Aoud [Branc ines,] I,Pichini,]]	[hen]			
			deflection & spin kick						waveform				
		pla	ain	spi	n²	spin>2	tidal	plain	spin ²	tidal	Integration complexity		
1	PM	WQFT Amps	WEFT HEFT	WQFT Amps	WEFT HEFT	Amps HEFT	X	trivial	trivial	trivial	\sim tree-level		
2	PM	WQFT Amps	WEFT HEFT	WQFT	WEFT HEFT	Amps	WQFT WEFT	WQFT WEFT	WQFT WEFT	WQFT WEFT	~ 1-loop		
3 w/	PM ′o r-r	WQFT Amps	WEFT HEFT	WQFT)		WQFT WEFT				~ 2-loop		
3 	PM r-r	WQFT Amps	WEFT HEFT	WQFT	(WEFT)	WQFT WEFT				~ 2-loop		
4 w/	PM o r-r	Amps	WEFT								~ 3-loop		

r-r: Radiation-reaction

(...) : partial results

& WAFT HIGHLY EFFICIENT FOR CLASSICAL SCATTERING.

- FOCUS ON OBSERVABLES BY QUANTIZING" WORCDLING D.O.F.
- O DULY CONPUTE TREE-DIAGRAMS (NO "SUPER-CLASSICAL" CONTRIBUTIONS)
- · ALL PROPAGATORS RETARDED : LO "SPECIAC" TREATMENTS OF CONSETTUATIVE & PADIATION-REACTED CONTRIBUTIONS
- U SPIN CARRIED BY GRASSMANN VELTORS ON THE WORLDLIVE (à le STRILL THEORY)

- O RELKION TO SELF-FORCE APPROACH?
- O BOUND ORBITS ?
- I HICHER ORDERS IN SPIL?
- O BBSERVABLES @ 4PM ?