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Particle Physics: Paradigmatic experiment is Scattering in Colliders

Theory: Relativistic Quantum Field Theory

path integral  
quantization

Lattice Field Thy: Bound system 

Extension I: Conformal symmetry

Relativistic QFTs without intrinsic mass scale (=̂ massless or at very high
energies) have an enlarged space-time symmetry: Conformal symmetry

New transformations: Dilatations and inversions

Dilatation transf.: D : xµ ! xµ  2 R

Special conformal transf.: Kµ = I�Pµ�I with I : Inversion xµ ! xµ

x2

Angle preserving transformations

Conformal group is SO(2, 4) with algebra:

[Kµ, P⌫ ] = 2i(⌘µ⌫D � Mµ⌫) , [D, Pµ] = iPµ , [D, Kµ] = �iKµ ,

[K⇢, Mµ⌫ ] = i(⌘⇢µK⌫ � ⌘⇢⌫Kµ) & Poincaré algebra

Prominent examples:

Maxwell’s theory L = 1
4Fµ⌫F

µ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ

��4 theory L = 1
2(@µ�)2 � ��4

Standard model L = �1
4Fµ⌫F

µ⌫ + i ̄ /D +  iYij j �

up to Higgs mass term + |Dµ�|2 � �|�|4 � m2 |�|2
[7/31]

Aus aktuellem Anlass...
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Projekt C6: Scattering amplitudes: Symmetries and Interrelations in maximal Supergravity and Yang-Mills [2/8]

Perturbative QFT: S-matrix 

Gravity: Gravitational wave emission in Black Hole and Neutron Star 
encounters now routinely measured in LIGO-Virgo-Karga GW detectors

Theory: Needs perturbative Solution of classical gravitational two-body 
problem: Apply perturbative QFT techniques!

<latexit sha1_base64="mz9HCOYRUs4uQqjkPDkft4LfD78="></latexit>
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Classical radiative field theory



GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-Karga 
Collaboration 



GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Measurement of binary parameters: 
Masses, Spins, Distance 

27
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Figure 7. Marginal posterior distributions for the source chirp mass M, mass ratio q, e↵ective inspiral spin �e↵ , e↵ective
precession spin �p and luminosity distance DL for O3b candidates with pastro > 0.5 plus GW200105 162426. The vertical
extent of each colored region is proportional to one-dimensional marginal posterior distribution at a given parameter value
for the corresponding event. We highlight with italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120
because of potential uncertainties in its pastro and because it has significant posterior support outside of mass ratios where the
waveform models have been calibrated. Results for GW200308 173609 and GW200322 091133 include a prior-dominated mode
at large distances and high masses: the hatched posterior probability distribution shown on the lower half of the plots for these
candidates exclude these low-likelihood, prior-dominated modes. Colors correspond to the date of observation.

LVG collaboration arXiv:2111.03606 
mass spin distance

Binary mergers of black 
holes (BHs) and 
neutron stars (NS)

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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PHYSICS CASES

•Black hole formation & evolution 
•Neutron star properties: Equation of state, strong 

interacting matter 
•Multi-messenger astronomy 
•New astrophysical sources of GW 

Astrophysics:

Fundamental physics: •Precision tests of (strong field) GR 

•New physics signals? Modifications of GR, 
Higher curvature terms, Dark Matter… 

AEI

•3rd generation of GW observatories (Einstein Telescope; Advanced 
LIGO, LISA) to start in 2030’s.  

•Highly increased sensitivity expected: Need for high precision theory 
predictions



THE GENERAL RELATIVISTIC  2-BODY PROBLEM
As in Newtonian case has either bound or unbound orbits.
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Inspiral of 2 BHs or NSs: 

Virial-thm: 

post-Newtonian (PN) expansion:
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Scattering of 2 BHs or NSs: 

Weak field (G), exact in v 

post-Newtonian (PM) expansion 
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gµ⌫ = ⌘µ⌫ + hµ⌫Weak field expansion:
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THE POST NEWTONIAN EXPANSION
Effective (conservative) action known up to 5PN order:

4

can interpret it as the generalized maximal cut of the mo-
mentum space triangle integral where all propagators are
put on shell (green dashed diagram), expressed in terms
of region momenta xj , which map to the dual momenta
Rj via

Rµ
j := xµ

j+1
� xµ

j�1
. (19)

Moreover, I3� is related to a generalized cut of the four-
point (box) integral, in the limit where one point is sent
to infinity. The box integral is invariant under a Yangian
algebra, an extension of its well known conformal sym-
metry [66, 77]. As such, in the region R2

j < 0 the integral
is given by the minimal transcendentally solution of the
Yangian constraints found in [68] (modulo a piecewise
constant):

I3� =
C

�
, �2 := (R2 ·R3)

2
�R2

2
R2

3
. (20)

Note that due to R1+R2+R3 = 0 this representation is
not unique and one may pick any two Ri’s to define �2.

To obtain I3�, it is useful to generalize the steps of
Westpfahl [59], who evaluated the integral for the re-
tarded propagator. This generalization performed in ap-
pendix A shows that the value of the integral depends on
the sign of �2. In fact, for R2

j < 0 with j = 1, 2, 3 the
expression (20) can be compared with the result of [59]
which shows that C(�2 > 0, R2

j < 0) = ⇡/4 in the above
expression. However, more care is needed to obtain C
for generic kinematics. The explicit calculation given in
appendix A shows that for �2 > 0 we have

I3� =
⇡

4�
⇥(�R2

1
R2

2
R2

3
). (21)

Here ⇥ denotes the Heaviside-function as defined in (A7).
For �2 < 0 the integral diverges and for �2 = 0 it is
proportional to

P
i �(R

2

j ), see appendix A.

IV. THE 1PN EXPANSION

In this section we want to provide a first test of the
above expression for the full 2PM e↵ective action against
known results for the three-body potential at 1PN order.
For this we first solve the equation of motion �S/�ei = 0
for ei perturbatively up to order 2:

ei =
1p
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Plugging this solution back into (13) and expanding to
order 4 yields the 2PM e↵ective action free of the ein-
bein. We then consider its non-relativistic limit, choosing
the convenient gauge ⌧i = ti. Reintroducing the speed of
light c such that
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we see that in P (xi) of (16) only the second line con-
tributes at leading order in c�1:

X
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Note that we have rewritten the sum by discarding prop-
agators with both ends on the same worldline. Using the
non-relativistic expansion of the propagator (10)
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where rij = |rij | with rij = xi � xj , yields a localized
time integration in the e↵ective action (17). After some
rearrangements, we find the 1PN three-body e↵ective ac-
tion1
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where we abbreviate nij := rij/rij and G = 2/32⇡. This
result agrees with the well known 1PN expression [14].

V. POST-NEWTONIAN EXPANSION AND
INTEGRAL BOOTSTRAP

The 1PN expansion obtained in the previous section
merely tests the second line of the three-body contribu-
tion (16) to the e↵ective potential. In order to obtain the
expansion at 2PN order, also the third line in (16) has to
be taken into account. This includes second derivatives
of the three-delta integral, @µ

j @
⌫
kI3�, cf. the ⇥-function in

(21). As outlined in detail in appendix B, taking these
derivatives leads to lengthy expressions in terms of delta
functions and their derivatives which are hard to control.
In fact, it is simpler to perform the non-relativistic ex-
pansion directly on the level of the integrand of I3� as we
will demonstrate in the following. For convenience of the
reader we briefly summarize the below strategy: First, we
will show that expanding the integrand of I3� leads to the
family of key integrals given in (31). We will then use the
Yangian level-one symmetry of these integrals, i.e. invari-
ance under the di↵erential operator (33), to obtain the

1 Note that in the GR literature the PN action is typically rescaled
by a factor of c2.
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the sign of �2. In fact, for R2

j < 0 with j = 1, 2, 3 the
expression (20) can be compared with the result of [59]
which shows that C(�2 > 0, R2

j < 0) = ⇡/4 in the above
expression. However, more care is needed to obtain C
for generic kinematics. The explicit calculation given in
appendix A shows that for �2 > 0 we have

I3� =
⇡

4�
⇥(�R2

1
R2

2
R2

3
). (21)

Here ⇥ denotes the Heaviside-function as defined in (A7).
For �2 < 0 the integral diverges and for �2 = 0 it is
proportional to

P
i �(R

2

j ), see appendix A.

IV. THE 1PN EXPANSION

In this section we want to provide a first test of the
above expression for the full 2PM e↵ective action against
known results for the three-body potential at 1PN order.
For this we first solve the equation of motion �S/�ei = 0
for ei perturbatively up to order 2:

ei =
1p
u2

i

+
X

j 6=i

Z
d⌧j

2mj

16⇡
q

u6

iu
2

j

�
u2

ij �
1

2
u2

iu
2

j

�
+O(4).

(22)

Plugging this solution back into (13) and expanding to
order 4 yields the 2PM e↵ective action free of the ein-
bein. We then consider its non-relativistic limit, choosing
the convenient gauge ⌧i = ti. Reintroducing the speed of
light c such that

uµ
i =

⇣
1,

vi

c

⌘
,

@

@xµ
i

=

✓
@

c@ti
,

@

@xi

◆
,  !



c
, (23)

we see that in P (xi) of (16) only the second line con-
tributes at leading order in c�1:

X

i,j,k

0P (xi) = �
3⇡m1m2m3

8

X

i

X

j 6=i
k 6=i

�(x2

ij)�(x
2

ik)+O(c�2).

(24)
Note that we have rewritten the sum by discarding prop-
agators with both ends on the same worldline. Using the
non-relativistic expansion of the propagator (10)

�(x2

ij) =
�(ti � tj)

rij
�

rij
2c2

@ti@tj�(ti � tj) (25)

+
r3ij
24c4

@2

ti@
2

tj�(ti � tj) +O(c�4),

where rij = |rij | with rij = xi � xj , yields a localized
time integration in the e↵ective action (17). After some
rearrangements, we find the 1PN three-body e↵ective ac-
tion1

S =
X

i

Z
dt


�mi +

1

c2

✓
miv2

i

2
+
X

j 6=i

Gmimj

2rij

◆

+
1

c4

✓
miv4

i

8
+

X

j 6=i

Gmimj

4rij

�
6v2

i �(nij ·vi)(nij ·vj)

� 7vi · vj

�
�

X

j 6=i

X

k 6=i

G2mimjmk

2rijrik

◆�
, (26)

where we abbreviate nij := rij/rij and G = 2/32⇡. This
result agrees with the well known 1PN expression [14].

V. POST-NEWTONIAN EXPANSION AND
INTEGRAL BOOTSTRAP

The 1PN expansion obtained in the previous section
merely tests the second line of the three-body contribu-
tion (16) to the e↵ective potential. In order to obtain the
expansion at 2PN order, also the third line in (16) has to
be taken into account. This includes second derivatives
of the three-delta integral, @µ

j @
⌫
kI3�, cf. the ⇥-function in

(21). As outlined in detail in appendix B, taking these
derivatives leads to lengthy expressions in terms of delta
functions and their derivatives which are hard to control.
In fact, it is simpler to perform the non-relativistic ex-
pansion directly on the level of the integrand of I3� as we
will demonstrate in the following. For convenience of the
reader we briefly summarize the below strategy: First, we
will show that expanding the integrand of I3� leads to the
family of key integrals given in (31). We will then use the
Yangian level-one symmetry of these integrals, i.e. invari-
ance under the di↵erential operator (33), to obtain the

1 Note that in the GR literature the PN action is typically rescaled
by a factor of c2.

7

Here we refer to the first term on the right hand side as
the three-body interaction and to the remaining terms as
the two-body interactions. When identifying two of the
three indices, we encounter a divergence 1/rij |j=i and an
indefinite unit vector nij |j=i. In light of the vanishing
of propagators with both ends on the same worldline,
we propose to regularize the divergences as 1/rij |j=i !

0. Terms of odd order in nij |j=i also vanish due to the
anti-symmetry in the indices. For the quadratic terms in
nij |j=i of the 2PN result we adopt the following limiting
prescription:

nij ·v↵ nij ·v� |j=i ! v↵ · v� . (50)

That is, whenever the identification of two points yields
an expression as given on the left hand side, we replace it
by the right hand side. This prescription is natural from
the perspective of dimensional analysis and symmetry
considerations, and it reproduces the correct results as
given in the literature. With regard to the 3PN result to
be discussed in section VII we already give the rule

nij ·v↵ nij ·v� nij ·v⇢ nij ·v�|j=i (51)

! v↵ ·v� v⇢ ·v� + v↵ ·v⇢ v� ·v� + v↵ ·v� v� ·v⇢.

We note that the 1/✏-term in (43) naturally drops out
in the final expression for the action due to the deriva-
tives that have to be applied. Moreover, we expect this
property to hold to all orders in the PN expansion. This
is explicitly shown to be true in the 3PN calculation of
section VII. The 2PN e↵ective action reads

S2PN =
X

i

Z
dt

c6

⇢
miv6

i

16
+
X

j 6=i

Gmimj

16rij

h
3(nij ·vi)

2(nij ·vj)
2
� 6nij ·vi nij ·vj v

2

ij � 2 (nij ·vj)
2 v2

i

+ 3v2

i v
2

j + 2 (vi ·vj)
2
� 20v2

i vi ·vj + 14v4

i

i
+

X

j 6=i

G2mim2

j

2r2ij

h
33 (nij · vij)

2
� 17v2

ij

i

+
X

j 6=i

X

k 6=i

G2mimjmk

8


1

rijrik

�
4(nij · vj)

2 + 18v2

i � 16v2

j � 32vi · vj + 32vj · vk

�
(52)

+
1

r2ij

�
14nik ·vk nij ·vk � 12nij ·vi nik ·vk + nij ·nik (nik ·vk)

2
� nij ·nik v

2

k

� �

+
X

j 6=i

X

k 6=i,j

G2mimjmk


2(nij�njk)·vij

(rij + rik + rjk)2
�
4 (nij + nik)·vij + (nik + njk)·vik

�

+
9 (nij ·vij)

2
� 9v2

ij + 2 (nij ·vik)
2
� 2v2

ik

rij (rij + rik + rjk)

��
+G3

⇥ [static term] ,

where we define vij := vi�vj . Here we have performed a
field redefinition to push terms that involve accelerations
to higher orders in G. We have checked that our result
agrees with the literature [47, 48] up to a total derivative.
Note that we do not have access to the static (velocity
independent) term at O(G3) in our approach as it stems
from a 3PM computation.

VII. NEW CONTRIBUTIONS AT 3PN

In this section we explicitly evaluate the contributions
to the 3PN three-body e↵ective potential. Limiting the
number of point masses to two gives the two-body 3PN
e↵ective action, which we checked to agree with [27] up
to a total derivative. Next to the novel three-point G2v4

terms, the below expression contains terms that scale as
Gv6, as well as two-point terms of order G2v4 which have

been known before. The full 3PN action can be written
in the form

S3PN =
X

i

Z
dt

c8

⇢
5

128
miv

8

i + L3PN

(A)
+ L3PN

(B)
(53)

+ L3PN

(C)
+ L3PN

(D)

�
+O(G3).

Note that the terms at order G3 are not given here and
require two yet unknown four-point integrals at one and
two loops. Moreover, there are additional G4 contribu-
tions at 3PN. In (53) we have ordered the various terms,
which are explicitly given in the following, by their power
of G and the structure of summations. Terms from per-
turbative solutions of the equations of motion for the
einbein, cf. (22), contribute at various places. Explicit
expressions for the terms in (53) are also provided in an
ancillary file to this paper. The term L3PN

(A)
originates
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POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS
Conservative non-spinning 2-body dynamics:

0PN 1PN 2PN 3PN 4PN 5PN

0PM 1 v2 v4 v6 v8 v10 v12 …

1PM G/r G v2/r G v4/r G v6/r G v8/r G v10/r …

2PM G2 1/r2 G2 v2/r2  G2 v4/r2 G2 v6/r2 G2 v8/r2 …

3PM G3 1/r3  G3 v2/r3 G3 v6/r3 G3 v8/r3 …

4PM G4 1/r4 G4 v2/r4 G4 v6/r4 …

…. : :

PM state-of-the-art

PN state-of-the-art

[Bern,Cheung,Roiban,Shen, Solon,Zeng][Kälin, Liu, Porto][Di Vecchia, Heissenberg, Russo,Veneziano]
[Bjerrum-Bohr,Vanhove,Damgaard][Brandhuber,Chen,Travaglini,Wen][Jakobsen,Mogull,JP,Sauer]

[Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng][Dlapa,Källin,Liu,Porto]

[many]

[Newton] [EIH][Westpfahl]

[Einstein]

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity



THE POST-MINKOWSKIAN EXPANSION
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THE GENERAL REALTIVISTIC TWO BODY PROBLEM IN PM: 
TRADITIONAL  APPROACH 
Point-particle approximation for BHs (or NSs)
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Point particle Bulk gravity & gauge 

1) Equations of motion:

2) Solve iteratively in 
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Einstein’s eqs.
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3) Construct observables
Far field waveform:

„Impulse“ (change in momentum):
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straight line: „in“ state deflectionsemitted radiation
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USE OF QUANTUM FIELD THEORY TECHNIQUES FOR CLASSICAL 2-BODY PROBLEM
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[Jakobsen,Mogull,JP,Steinhoff]

1) Effective world-line field theory:

Construct effective action:

Solve e.oms for          :

2) Scattering amplitudes:

Scalar fields as avatars of BHs & NSs:

+ Modern on-shell techniques:
- Non-trivial classical limit

- Opaque relation to observables

3) World line quantum field theory: Best of 1) & 2)

Use 1) but also path integrate over          !
Philosophy: Focus on observables (here one-point functions @ tree-level
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Figure 5: The six diagrams contributing to the m1m3

2
component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.

Both expressions include
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where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and

R
(n)

↵�⇢�,µ1⌫1...µn⌫n :=
�
n
R

(n)
↵�⇢�

�hµ1⌫1 · · · �hµn⌫n
. (4.5)

R
(n)

↵�⇢� is given by the n’th order of  =
p
32⇡G in a PM expansion of the curvature

tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:
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where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).

4.1 Impulse

Our main goal is to calculate the impulse (deflection) on the first body, including

radiation-reaction e↵ects. This is recovered from the WQFT using:

�p
µ

1
= �m1!

2
hz

µ

1
(!)i|!=0 , (4.7)

where the expectation value was discussed in eq. (2.29) and �p
µ

i
=
P

n
G

n�p
(n)µ

i
in

the PM expansion. As the results for �p
(1)µ

i
and �p

(2)µ

i
are well-established — tidal
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(a) (b) (c) (d)

Figure 6: The four types of diagrams contributing to the test-body m1m3

2
components

of �p(3)µ
1

linear in tidal coe�cients.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: The 14 types of diagrams contributing to the m2

1
m2

2
components of the 3PM

gravitational impulse �p(3)µ
1

without tidal corrections. All diagrams except the last, (n),

are associated with the comparable-mass family I(�1;�2;�3)
n1,n2,...,n7 (3.1); diagrams (l)–(n) are as-

sociated with K(�1;�2;�3)
n1,n2,...,n5 family (3.25).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 8: The 14 types of diagrams contributing to the m2

1
m2

2
comparable-mass compo-

nents of �p(3)µ
1

linear in tidal coe�cients.

e↵ects beginning at 2PM order [38, 105–107] — we focus here on the 3PM compo-

nent �p
(3)µ

i
. This will allow us to use the retarded integrals derived in section 3.

Results for �p
(1)µ

i
and �p

(2)µ

i
are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
µ

1
line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified

25
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1) Test body diagrams (geodesic motion in Schwarzschild background):

(a) (b) (c) (d) (e) (f)

Figure 5: The six diagrams contributing to the m1m3

2
component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.

Both expressions include
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where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and
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. (4.5)
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↵�⇢� is given by the n’th order of  =
p
32⇡G in a PM expansion of the curvature

tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:
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where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).

4.1 Impulse

Our main goal is to calculate the impulse (deflection) on the first body, including

radiation-reaction e↵ects. This is recovered from the WQFT using:
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2
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(!)i|!=0 , (4.7)

where the expectation value was discussed in eq. (2.29) and �p
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=
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in

the PM expansion. As the results for �p
(1)µ
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and �p
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are well-established — tidal
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2) Comparable mass diagrams (i0 prescription relevant for red propagators):
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Figure 6: The four types of diagrams contributing to the test-body m1m3

2
components

of �p(3)µ
1

linear in tidal coe�cients.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: The 14 types of diagrams contributing to the m2

1
m2

2
components of the 3PM

gravitational impulse �p(3)µ
1

without tidal corrections. All diagrams except the last, (n),

are associated with the comparable-mass family I(�1;�2;�3)
n1,n2,...,n7 (3.1); diagrams (l)–(n) are as-

sociated with K(�1;�2;�3)
n1,n2,...,n5 family (3.25).

(a) (b) (c) (d) (e) (f) (g)
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Figure 8: The 14 types of diagrams contributing to the m2

1
m2

2
comparable-mass compo-

nents of �p(3)µ
1

linear in tidal coe�cients.

e↵ects beginning at 2PM order [38, 105–107] — we focus here on the 3PM compo-

nent �p
(3)µ

i
. This will allow us to use the retarded integrals derived in section 3.

Results for �p
(1)µ

i
and �p

(2)µ

i
are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
µ

1
line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified
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Figure B2.2.: Representation of GW observables

two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of

5

Deflection:

3

(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIG. 1: The nine types of diagram contributing to the m1m
3
2 components of �p(3)µ

1 and the m3
2 components of ��(3)µ

1 ,
involving I(1;±)-type integrals (13). In the test-body limit m1 � m2 these are the only surviving contributions. All graphs
should be considered trees — the dotted lines represent the worldlines on which energy is conserved, instead of momentum.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v)

FIG. 2: The twenty-two types of diagram contributing to the m2
1m

2
2 components of �p(3)µ

1 and the m1m
2
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two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is

hµ�(k)

z�1(�1)
z�2(�2)

= i
m

mPl
eik·b��(k · v + �1 + �2)� (4.16)

�
1

2
k�1k�2v

µv� + �1k�2v
(µ��)

�1
+ �2k�1v

(µ��)
�2

+ �1�2�
(µ
�1

��)
�2

�
.

While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in
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V WL,µ�
�1···�n

(k; �1, · · · , �n) = in�1 m

mPl
eik·b��

�
k · v +

n�

i=1

�i

�
� (4.17)

�
1

2

�
n�

i=1

k�i

�
vµv� +

n�

i=1

�i

�
n�

j �=i

k�j

�
v(µ��)

�i
+

n�

i<j

�i�j

�
n�

l �=i,j

k�l

�
�(µ
�i

��)
�j

�
.

An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]

�pµ
(i)
= p(a)(⌧i = +1) � p(a)(⌧i = �1) = �mi !

2
hzµi i

���
!=0
, (B2.3)

lim
r!1

gµ⌫(x) = ⌘µ⌫ +
4G
r

π
d⌦ e�ik ·xk2

hhµ⌫(k)i
���
kµ=⌦(1, Æx

r )
+O(

1
r2 ) . (B2.4)

This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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i ẋ�
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signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.
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standard bulk graviton vertices, of which we shall need
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To determine the Bremsstrahlung of two travers-
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i ẋ�
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
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ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z
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Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)

S(i)
pm = �mi

π
d⌧i

✓
1
2e

gµ⌫(xi) €x
µ
i €x

⌫
i +

e
2
+

cR
e

R(xi)gµ⌫(xi) €x
µ
i €x

⌫
i +

cV
e

Rµ⌫(xi) €x
µ
i €x

⌫
i + . . .

◆
, (B2.1)

where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= �i
�µ⌫

m (! + i� )2
,

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ
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i ẋ�
i

�
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

�
d4x

�
� 2

�2

�
�gR + (��hµ� � 1

2�µh�
�)2

�
,

(2)

with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.

The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

=
m�

2
eik ·b ��(k · v +!)

�
2!v(µ�

⌫)
⇢ + v

µv⌫k⇢
�

from which we read o� the two-point vertex:

hµ�(k)

z�(�)
=

m

2mPl
eik·b��(k · v + �)

�
2�v(µ��)

� + vµv�k�

�
. (4.14)

The energy � is also taken as outgoing. Finally, to quadratic order in zµ:

Sint
pm

��
z2 =

m

2mPl

�

k,�1,�2

eik·b��(k · v + �1 + �2)hµ�(�k)z�1(��1)z
�2(��2)�

�
1

2
k�1k�2v

µv� + �1k�2v
(µ��)

�1
+ �2k�1v

(µ��)
�2

+ �1�2�
(µ
�1

��)
�2

�
.

(4.15)
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.
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µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
�1...�n+1

(k; �1, . . . , �n, 0) =
�

�b�n+1
V WL,µ�

�1...�n
(k; �1, . . . , �n) . (4.18)

This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)

S(i)
pm = �mi

π
d⌧i

✓
1
2e

gµ⌫(xi) €x
µ
i €x

⌫
i +

e
2
+
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µ
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⌫
i +

cV
e

Rµ⌫(xi) €x
µ
i €x

⌫
i + . . .

◆
, (B2.1)

where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral

e
i
~ �[b,vi ] =

π
D[hµ⌫, z

µ
i ]e

i
~ (SEH+

Õ
i S

(i)
pm) . (B2.2)

in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]

�pµ
(i)
= p(a)(⌧i = +1) � p(a)(⌧i = �1) = �mi !

2
hzµi i

���
!=0
, (B2.3)
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π
d⌦ e�ik ·xk2

hhµ⌫(k)i
���
kµ=⌦(1, Æx

r )
+O(

1
r2 ) . (B2.4)

This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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Figure B2.1.: Sketch of the WQFT momentum space Feynman rules and observables. The dotted line represents the
undeflected world-line trajectories. There exist hzn vertices for all n.

actual state-of-the-art results for the Bremsstrahlung waveform1 [31] including spin up to quadratic order [33],
as well as for deflection of momenta and spin kicks of spinning bodies at the 3PM and quadratic spin order [34],
which were all published in PRL within the past year. Recent work on WQFT includes applications to light
bending [35], the state-of-the-art 2PM three-body potential [36] and on the double copy nature [37].

My WQFT approach is an extension of the traditional worldline EFT approach to the PM expansion [29, 30].
The latter only integrates out the graviton fluctuation hµ⌫ in the path-integral (B2.2). It computes the e�ective
action Se�(xi) whose equations of motion thereafter need to be solved perturbatively in G in a second step. The
WQFT procedure shortcuts this and directly leads to the observables. Still, the emerging e�ective potential
of the scattering problem carries valuable information that may be ported to the bound case. The group or R.
Porto (DESY) has computed the conservative e�ective action, i.e. neglecting radiation reaction contributions,
to 3PM [30] and 4PM [38] order, as well as spin [39] and tidal [40] e�ects at 2PM order, using the worldline
EFT approach.

The WQFT and EFT approaches are complementary to a recently blossoming QFT approach to the gravitational
two-body problem: applying the theory of scattering amplitudes [41–47]. Here, one uses massive scalar fields
as avatars of spinless black holes and studies their 2 ! 2 scattering amplitudes. Only thereafter one takes
the classical limit. The innovations of the scattering amplitude program for constructing tree and loop-level
amplitudes in perturbatively quantized GR allowed a quick advance to higher PM orders in the past three years.
The conservative e�ective potential has been established at 3PM [44–46] and recently at 4PM order [48] all
in the spin-less case, while the inclusion of radiation-reaction e�ects [49–52] needed to be done separately
and to date only exists for the 3PM result. However, the amplitude approach su�ers from three drawbacks:
(i) The need to take a classical limit. This limit is subtle due to the quantum nature of the mass: opposed to
WQFT here it is not equivalent to tree-level amplitudes, rather loop-level amplitudes contribute in parts to the
classical result. Certain super-classical contributions arise that mask the classical result and need to cancel
before one may retrieve the classical result. This implies that one actually needs to compute more than is needed

1See https://box.hu-berlin.de/f/94445439e1b54757b881 for a visualization of an equal mass encounter (plus
polarization) (B.Sc. thesis O. Babayemi, HU Berlin).
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by the inclusion of radiative e↵ects, and involve the integral families I(�1;�2;�3)
n1,n2,...,n7 and

K
(�1;�2;�3)
n1,n2,...,n5 discussed in section 3. There is also a third category of diagrams (not

drawn) relevant in the other test-body limit m1 � m2; however, as these are related

by symmetry to those in Figs. 5 and 6 we do not need to calculate them explicitly.

All integrands can be expressed as a Fourier transform over integrals of the kind

discussed in section 3:
Z

q

e
iq·b

�
�(q · v1)�

�(q · v2)|q|
n
{I

(�1;�2;�3)
n1,...n7

, J
(�1;�2)
n1,...n7

, K
(�1;�2;�3)
n1,...n5

} , (4.8)

where qµ is the total momentum exchanged via gravitons between the two worldlines.

To bring the diagrams into this form, we need to resolve four-dimensional delta

functions in the bulk and integrate over the energies !i of worldline propagators. As

explained in ref. [49], any leftover components of `µ
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may be conveniently resolved on

a basis of wµ
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and q
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After reducing to the master integrals given in section 3.5, our last step is to perform

the q-Fourier transform.

Our final result for �p
µ

1
up to 3PM order is given in the ancillary file. It takes

the generic form [32]:
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where the center-of-mass momentum is p1 = µ

p
�2 � 1/�, µ = M⌫ = m1m2/M ,

M = m1+m2 and � = E/M =
p
1 + 2⌫(� � 1). All terms proportional to the impact

parameter b
µ, both conservative and radiative, arise from the real integrals (3.30);

terms proportional to v
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, come from the imaginary integrals (3.31).
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The entire dynamics is therefore encoded by ✓ and P
µ

rad
, which we present below.
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4.2 Scattering angle

In the absence of tidal e↵ects, the complete scattering angle ✓ up to O(G3) is
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where ✓ = ✓cons + ✓rad has a finite high-energy � ! 1 limit:
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This is the well-known result of Amati, Ciafaloni and Veneziano [108], the radia-

tive correction ✓rad being required in order to cancel a logarithmic divergence that

otherwise appears in this limit [73]. With the inclusion of tidal e↵ects, only the con-

servative part of the angle is modified up to 3PM order, i.e. ✓tidal = ✓tidal,cons+O(G4):
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with � = (m2 � m1)/M and c
±
E2/B2 = c

(2)

E2/B2 ± c
(1)

E2/B2 — see also refs. [38, 107]. It

has a finite high-energy limit:
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .

The absence of a radiative part of the tidal correction to the scattering angle at

3PM order is explained using the linear response relation [73, 109, 110]:
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This predicts the radiative part of the scattering angle ✓rad given knowledge of the

radiated energy Erad and angular momentum Jrad. As Erad = P
0

rad
(in the center-of-

mass frame) begins at 3PM order, to deduce the 3PM contribution to ✓rad we need

only Jrad at 2PM order. As we shall see in section 4.4, the absence of a wave memory

in the tidal correction to the 2PM waveform guarantees that Jtidal,rad = O(G3), hence

✓tidal,rad = O(G4).

4.3 Radiated momentum
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .
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where K? Ip

"
-

- Ill , E)
a : Gw frequency

£ point to the obseirvern
1. ✗ = alt - r) = Ru

w

retarded time



[Kovacs,Thorne `75]Integratedwaveform-f.is/-computedbs in 4 long Papers !
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Performing there integrals gehts time - domain Wandern : VIDEO

E-i-E.in#-b-E-(Hr.I-)+2sYa;-fao+NALEg+aazIBis ]!:

Wave memory

f-
'"

(u : -1N) - f-
"

(u. - o )
=

4128 - 1) E.v, ( 2 b. { Sir , - b- sc.ir )

HST (g.4) 2
t 1<-32

M , Mz

✗ '- Viva b :b , - b , g :( 1
, E)

E : polerizctun
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PUTTING SPIN ON THE WORLD-LINE
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[Matthisson-Papapetrou-Dixon]
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Traditional approach:

Spin tensor              & co-moving frame
<latexit sha1_base64="gCcfs3AQNSILycg/KUnkIdHxxLk="></latexit>

Sµ⌫
i (⌧)

<latexit sha1_base64="bkhA4fjz1FHD5N5UHGKYIqPZ3zY="></latexit>

⇤Aµ
i (⌧)

Eoms:
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Dp⌫

D⌧
+

1

2
Sµ⇢Rµ⇢⌫ẋ

 = 0
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DSµ⌫

D⌧
+ 2ẋ[µ p⌫] = 0

Freedom of imposing a 

Spin-Supplementary Condition:
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pµ S
µ⌫ = 0
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, Q↵  ↵ = 0

Susy = SSC:
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Our approach:  Spinning super-particle [Howe,Penati,Pernici,Townsend][Howe,Penati,Pernici,Townsend]

[Bastianelli, Benincasa,Giombi] [Bonezzi, Meyer, Sachs]
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In flat space-time

Describes free spin N/2 particle.      Spin: 
<latexit sha1_base64="4oYHf7XaKs/kKvMrYSM2pCdY9CM="></latexit>

Sµ⌫ =  µ
↵ 

⌫
↵



N=2 SUPERPARTICLE IN CURVED SPACE = KERR-BLACK HOLE
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[Jakobsen,Mogull,JP,Steinhoff]

In curved space-time SUSY only preserved up to N=2 (= spin 1 particle):9^GIIGI[ VHD060GIK _YEI/YM LGK0K /WKHDg
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2Scattering scenario:

Initial spins

of BHs/NSs



Spinning WQFT Feynman vieles
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POST-MINKOWSKIAN SCATTERING PRECISSION RACE

deflection & spin kick waveform

plain spin2 spin>2 tidal plain spin2 tidal

1PM X trivial trivial trivial

2PM

3PM 
w/o r-r

3PM 
r-r

4PM 
w/o r-r

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity

~ 2-loop

WEFT Amps HEFT

WQFT

WQFT

WQFT

WQFT

WQFT

WQFT

WQFT

WQFT

WQFT

WQFT WQFT WQFTWQFT

WQFT

WEFT

WEFT

WEFT

WEFT

WEFT

Amps

Amps

Amps

Amps

Amps

Amps

AmpsAmps

Amps

WEFT

WEFT

WEFT

WQFT

HEFT HEFT

HEFT

HEFT

HEFT HEFT

HEFT

WEFT WEFT WEFT

Heavy BH effective theoryScattering amplitudesWorldline effective theory

( )Amps

[us] [Källin,Porto,Dlapa,Cho,Liu,..]
[Riva,Vernizzi,Mougiakakos..]

[Bern,Roiban,Shen,Parra-Martinez,Ruf,..]                           
[Di Vecchia,Veneziano,Heissenberg,Russo]
[Solon,Cheung,..][Huang,..][Guevera,Ochirov,Vines,…]
[Bjerrum-Bohr,Damgaard,Vanhove,..][Johansson,Pichini,…]
[Kosower,O’Connell,Maybee,Cristofoli,Gonzo…]

[Aoude,Haddad,Helset]
[Brandhuber,Travaglini,Chen]

WEFT( )

(…) : partial results

WEFT

WEFT

( )Amps

 r-r: Radiation-reaction



SUNLMARY

☐ LUQFT HIGHLY EFEICIENT FOR CLASSICAL SCATTERINC :

• FOCUS ON OBSERUABLES BY
"

QUANTLZING "

WORLD LINE D.O - F .

o ONLY COMPUTE TREE - DIAGRAMS (NO "

SUPER -

CLASSICAL
"

CONTRIBUTIONS )

° ALL PDOPAGA>ORJ RETARDED : NO
"
SPECIAL"

TREATMENTS OF CONSERVATIVE & RADIAICOW - REACTED

CONTRIBUTIONS

☐ SPIN CARRIER BY GRASSMANN VELTORS ON THE

WORLDLIVE (äle STRING THEORY )



OUTLOOK

☐ RELATION TO SELF - FORCE APPROACH ?

☐ BOUND ORBITS ?

☐ HIGHER ORDERS 'N SPIN ?

☐ GBSERUABCES @ 4PM ?

THANK You !


