PROTON STRUCTURE IN THE LHC ERA:

TESTING THE STANDARD MODEL AND SEARCHING FOR NEW PHYSICS

Katerina Lipka

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

BERGISCHE UNIVERSITÄT WUPPERTAL

MODERN PICTURE OF VISIBLE MATTER

Standard Model of Particle Physics

- classifies fundamental particles and forces (similar to Periodic Table in Chemistry)

MODERN PICTURE OF VISIBLE MATTER

Standard Model of Particle Physics

- classifies fundamental particles and forces (similar to Periodic Table in Chemistry)

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

MODERN PICTURE OF VISIBLE MATTER

Standard Model of Particle Physics

- classifies fundamental particles and forces (similar to Periodic Table in Chemistry)

- parameters: masses of the elementary particles and couplings of interactions

IS THIS PICTURE COMPREHENSIVE ?

 the values of masses and couplings need to be found experimentally mass difference is a puzzle itself

IS THIS PICTURE COMPREHENSIVE ?

- the values of masses and couplings need to be found experimentally
- origin of the structure : why 3 generations?

what is the reason ? window for New Physics!

THIS TALK: STRONG INTERACTION

- holds together nuclear matter and is responsible for its mass
- reach ~ nucleon size (1 fm)
- described by the Quantum Chromodynamics (QCD)

force carriers

matter building blocks

Properties (result of the underlying symmetry)

- confinement: quarks not observable as free particles
- asymptotic freedom: energy dependence of couplings and quark masses

THIS TALK: QCD AT HIGHEST ENERGIES

microscopes of particle physics: high-energy accelerators

8

LARGE HADRON COLLIDER @ CERN

Circular accelerator (synchrotron) underground (100 m) tunnel 27 km long

Proton* beams bent by superconducting magnets of 8 T

Experiments ATLAS, CMS, ALICE, LHCb

Proton collision centre-of-mass energies: 2.76, 5.02, 7, 8, 13, to start 13.6 TeV

THE STRUCTURE OF THE NUCLEON*

*In the following I talk about the proton

• made of point-like constituents partons (quarks & gluons) name by R. Feynman in 1969 for any constituent of a hadron

- valence quarks determine the quantum numbers
- quarks exchange *gluons*, gluons split into *sea quark pairs*
- nucleon mass: energy of gluons and sea-quarks

• made of point-like constituents *partons* (quarks & gluons)

- valence quarks determine the quantum numbers
- quarks exchange *gluons*, gluons split into *sea quark pairs*
- nucleon mass: energy of gluons and sea-quarks

• Parton Distribution Functions: probability density $f_i(x, Q^2)$ finding a parton *i* in a proton carrying its momentum fraction *x*, as resolved at scale Q^2

• made of point-like constituents *partons* (quarks & gluons)

- valence quarks determine the quantum numbers
- quarks exchange *gluons*, gluons split into *sea quark pairs*
- nucleon mass: energy of gluons and sea-quarks

• Parton Distribution Functions: probability density $f_i(x, Q^2)$ finding a parton *i* in a proton carrying its momentum fraction *x*, as resolved at scale Q^2

pQCD: quark-gluon exchange: PDF ~ probability to find a parton inside a parton represented by the universal splitting functions:

calculable via Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations

made of point-like constituents partons (quarks & gluons)

- valence quarks determine the quantum numbers
- quarks exchange *gluons*, gluons split into *sea quark pairs*
- nucleon mass: energy of gluons and sea-quarks

• Parton Distribution Functions: probability density $f_i(x,Q^2)$ finding a parton *i* in a proton carrying its momentum fraction *x*, as resolved at scale Q^2

NB: PDFs are defined at a certain order of pQCD. At higher orders, PDF defines indeed probability to find a parton inside a parton.

• Dependence on Q² calculable in perturbative QCD via DGLAP evolution equations

- Dependence on *x* is determined experimentally
- Parton Distribution Functions considered universal:

PROTON STRUCTURE PHENOMENOLOGY

Parton Distribution Functions

 $f_i(Q^2, x)$

provided by theory determined experimentally

- parameterised at an evolution scale μ^2_0 e.g. $f(x)=Ax^B(1-x)^C(1+Dx+Ex^2)$
- evolved (DGLAP) to $\mu^2 > \mu^2_0$
- construct cross section predictions
- fit to the experimental data

PDFs are universal: use different processes ($ab = lp, p\overline{p}, pp$)

PROTON STRUCTURE PHENOMENOLOGY

Parton Distribution Functions

 $f_i(Q^2, x)$

provided

by theory

determined experimentally

Important for resulting PDFs:

- assumptions on masses of heavy quarks
- value of α_s (Mz)
- coverage of x by the experimental data
- uncertainties in data used

Basic data set: DIS at HERA at medium x Impact of the LHC: low and high x

PROTON STRUCTURE @ LHC precision QCD via jets and top quark production

fundamental QCD parameters, but have to be extracted from experimental measurements

PDFs mostly determined from Deep Inelastic $e^{\pm}p$ Scattering data (HERA) Many LHC processes provide additional information, most prominent:

- jet production: $\alpha_S(\mu)$, <u>gluon at mediu</u>m-high x $t\overline{t}$ production: \blacktriangleleft $\alpha_{S}(\mu), m_{t},$ gluon at high x

PROTON STRUCTURE AND QCD @ LHC VIA JET PRODUCTION

QCD confinement: quarks form collimated sprays of hadrons - jets

PDFs and $\alpha_S(m_Z)$

sensitivity to PDFs is quantified by correlation coefficients

(red: high sensitivity)

particular sensitive to the gluon at high *x*

PDFs and $\alpha_{S}(m_{Z})$

Most recent CMS measurement: inclusive jets at 13 TeV: arXiv:2111.10431

2-differential cross sections as a function of transverse momentum p_T of individual jet and rapidity y

Compared to QCD prediction at NNLO

NB systematic uncertainty not shown!

PDFs and $\alpha_S(m_Z)$

25

Most recent CMS measurement: probes the gluon distribution at high x

Appreciate tremendous effort and great success of the theory / tool development !

 NNLO: [Currie, Glover, Pires, PRL118 (2017) 072002] [Currie et al., JHEP 10 (2018) 155] [T. Gehrmann et al., PoS RADCOR2017 (2018) 074]
 NLOJet++ [Z. Nagy PRL 88 (2002) 122003, PRD 68 (2003) 094002]
 fastNLO [D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, arXiv:1208.3641]

... and many more

[J. Gao et al., arXiv:1207.0513]

27

GETTING PDFs FROM JET DATA

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

• PDF + uncertainties from:

uncertainties in exp. data

assumed values of quark masses choice of factorisation/renormalisation scales in the theory prediction

uncertainties in parametrisation

Getting PDFs + $\alpha_S(m_Z)$ from jet data

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

• PDF + uncertainties from:

uncertainties in exp. data

assumed values of quark masses choice of factorisation/renormalisation scales in the theory prediction

uncertainties in parametrisation

• Strong coupling constant $\alpha_S(m_Z) = 0.1170 \pm 0.0019$

 $0.0014_{fit} \pm 0.0007_{model} \pm 0.0008_{scale} \pm 0.0001_{param}$

NEW $\alpha_s(m_Z)$ VS EARLIER RESULTS

most precise single measurement (error 1.6%) mitigated dependence on PDFs

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

... AND GLUON GETS MORE PRECISE

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

- PDF + total uncertainties
- Strong coupling constant $\alpha_S(m_Z) = 0.1170 \pm 0.0019$
- compared to HERA-only fit { $\alpha_s(m_Z)$ fixed }

... AND GLUON GETS MORE PRECISE

QCD fit at NNLO: basis data - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

- PDF + total uncertainties
- Strong coupling constant $\alpha_S(m_Z) = 0.1170 \pm 0.0019$
- compared to HERA-only fit { $\alpha_s(m_Z)$ fixed }

PROTON STRUCTURE AND QCD @ LHC VIA TOP QUARK PAIR PRODUCTION

Too massive to form hadrons: top quark decays into W boson and b quark

TOP QUARK IN THE STANDARD MODEL

Most massive elementary particle known to date Does not form hadrons: the only "bare" quark

relation to M_H, M_W, Higgs Yukawa coupling strong coupling

the "elephant in the room"

for tests of QCD and the Standard Model

NB: MEASUREMENTS OF QUARK MASSES

Experimental observable: cross section (inclusive or as a function of kinematics)

The measurement is compared to the theory prediction,

fundamental parameters of the theory are derived from this comparison

TOP QUARK MASS IN QCD

Beyond LO:

bare mass term in Lagrange density receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$ determined at scale $\mu \rightarrow$ finite

Lagrange density with renormalised mass m_R is scale-dependent

TOP QUARK MASS IN QCD

Beyond LO:

bare mass term in Lagrange density receives self-energy corrections δm

Renormalised mass $m_R = m_0 + \delta m$ determined at scale $\mu \rightarrow$ finite

Lagrange density with renormalised mass m_R is scale-dependent

*m*_t becomes renormalisation-scheme dependent:

• pole mass: m_t^{pole} the pole of the quark propagator (concept of free parton) Good description of physics near $t\bar{t}$ production threshold

running mass m_t(μ)
 e.g. MS mass

valid above top-quark production threshold *running* follows Renormalisation Group Equations value at a fixed scale $m_t(\mu)$ to be extracted from the data

TOP QUARK MASS MEASUREMENTS

Different methods of measurement - very different precision

Theoretical interpretation of the extracted mass not always straightforward

only the results on the pole mass are shown

TOTAL $t\bar{t}$ CROSS SECTION: GLUON AT HIGH x

sensitive to the gluon PDF at high x, α_S and m_t total $t\bar{t}$ cross section: PDF, α_S and m_t are correlated: only one of the 3 parameters can be extracted

Impact of a single measurement in a PDF fit ($\alpha_s(m_z)$ and m_t fixed)

reduction of the uncertainty in the gluon distribution

SINGLE-DIFFERENTIAL $t\bar{t}$: GLUON AT HIGH x

More impact on PDF, α_s and m_t expected by using top quark kinematics

First QCD analysis of $t\bar{t}$ kinematics

Gluon PDF

- alters the normalisation and shape
- dominant theory uncertainty

Smaller uncertainty in g(x) for x > 0.1Significant change in shape of the gluon

3-DIFFERENTIAL $t\bar{t}$: GLUON, α_S , m_t AT ONCE! $t\bar{t}$ + 1 jet: enhance sensitivity to g(x), $\alpha_S(m_Z)$, m_t and their correlations

3-DIFFERENTIAL $t\bar{t}$: GLUON, α_{S} , m_{t} AT ONCE!

 $t\bar{t}$ + 1 jet: enhance sensitivity to g(x), $\alpha_{S}(m_{Z})$, m_{t} and their correlations

1

first simultaneous extraction of QCD parameters with $t\bar{t}$ kinematics: correlations strongly reduced!

WHAT ABOUT NEW PHYSICS ?INDIRECT SEARCHES WITH JETS AND $t\bar{t}$

ROLE OF QCD IN SEARCHES @ LHC

no signal observed, so far...

requires high precision !

<u>"SM" means mostly QCD: uncertainties driven by PDFs, α_S and quark masses</u>

In Standard Model, the relation of masses m_t, m_W, and m_H is strictly defined

use current values and precision of m_H and m_W

Need for New Physics at low energy scales [S. Heinemeyer et al]

Need for New Physics at high energy scales Universe Stability: meta-stable

Need for New Physics at high energy scales Universe Stability: unstable

QCD Global Fit

Electroweak Fit: [HEPfit, GFitter]

ATLAS & CMS measurements

In Standard Model, the relation of masses m_t, m_W, and m_H is strictly defined

use current values and precision of m_H and m_W

Need for New Physics at low energy scales [S. Heinemeyer et al]

Need for New Physics at high energy scales Universe Stability: meta-stable

Need for New Physics at high energy scales Universe Stability: unstable

QCD Global Fit

Electroweak Fit: [HEPfit, GFitter]

ATLAS & CMS measurements

inconsistency (New Physics) found ? Question of precision!

QCD asymptotic freedom: energy dependence ("running") of α_S and m_a

Running follows the QCD Renormalisation Group Equation

Strong coupling constant

QCD asymptotic freedom: energy dependence ("running") of α_S and m_a

Running follows the QCD Renormalisation Group Equation

Strong coupling constant

Fundamental test of QCD

Probe of Physics beyond the Standard Model

Running of quark masses demonstrated for charm and beauty quarks

First measurement of the top quark mass running:

Top quark mass

New Physics would modify the running of the top quark mass

"Toy example" of possible New Physics interpretations: Investigate scenarios where fermion mass is generated dynamically e.g. [PRL 94 (2005) 241801]

Top quark mass

please don't interpret this as New Physics

Good agreement with QCD? Question of precision in measurement and theory

JETS PROBING NEW PHYSICS

Examples of new phenomena appearing in jet final states:

- Quark compositeness, excited quarks: new interaction at a scale Λ
- New interactions from massive particles exchange

JETS PROBING NEW PHYSICS

Examples of new phenomena appearing in jet final states:

- Quark compositeness, excited quarks: new interaction at a scale Λ
- New interactions from massive particles exchange

JETS PROBING NEW PHYSICS

Examples of new phenomena appearing in jet final states:

- Quark compositeness, excited quarks: new interaction at a scale Λ
- New interactions from massive particles exchange

MIND THE BIAS DUE TO PDFs!

CDF Run I ($\sqrt{s} = 1.8$ TeV)

data >> theory at high scale
new physics found ?

MIND THE BIAS DUE TO PDFs!

CDF Run I ($\sqrt{s} = 1.8$ TeV)

data >> theory at high scale
new physics found ?

CDF Run II ($\sqrt{s} = 1.96$ TeV):

... now considering PDF uncertainties

large uncertainty in the theory prediction (due to error in the gluon distribution)

 \rightarrow no new physics, just accuracy of QCD

MIND THE BIAS DUE TO PDFs!

CDF Run I ($\sqrt{s} = 1.8$ TeV)

data >> theory at high scale
new physics found ?

CDF Run II ($\sqrt{s} = 1.96$ TeV):

large uncertainty in the theory prediction (due to error in the gluon distribution)

 \rightarrow no new physics, just accuracy of QCD

Conceptual problem - bias due to using the same data for PDF extraction : high- p_T jet production constraints best the gluon distribution at high x

JET PRODUCTION AT LHC: PROBE OF SM + CI

CI expected to show up at high p_T and central y:

Use inclusive jet production at 13 TeV to constrain SM + EFT

• SMEFT fit @ NLO: basic data - ep inclusive DIS cross sections (HERA) [arXiv:1506.06042]

+ CMS inclusive jets at 13 TeV [arXiv:2111.10431]

+ CMS 3-D $t\bar{t}$ cross sections [arXiv:1904.05237]

• jet x-section predictions: QCD NLO+NLL + EFT 4-quark CI (3 models tested)

SMEFT fit @ NLO: basic data - ep inclusive DIS cross sections (HERA) [arXiv:1506.06042]

+ CMS inclusive jets at 13 TeV [arXiv:2111.10431]

+ CMS 3-D *tt* cross sections [arXiv:1904.05237]:

jet x-section predictions: QCD NLO+NLL + EFT 4-quark CI (3 models tested)

QCD parameters (NLO):

 $lpha_S(m_Z) = 0.1187 \pm 0.0033$ NB: in agreement with WA $m_t^{pole} = 170.4 \pm 0.7$ GeV NB: the most precise!

59

• SMEFT fit @ NLO: basic data - ep inclusive DIS cross sections (HERA) [arXiv:1506.06042]

+ CMS inclusive jets at 13 TeV [arXiv:2111.10431]

+ CMS 3-D *tt* cross sections [arXiv:1904.05237]:

jet x-section predictions: QCD NLO+NLL + EFT 4-quark CI (3 models tested)

• QCD parameters (NLO):

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1187 \pm 0.0033$

 $m_t^{pole} = 170.4 \pm 0.7 \text{ GeV}$

• CI parameters ($\Lambda = 10$ TeV):

 $c_1^L = -0.07 \pm 0.02_{exp} \pm 0.01_{mod+par}$

SM +BSM obtained simultaneously !

SMEFT fit @ NLO: basic data - ep inclusive DIS cross sections (HERA) [arXiv:1506.06042]

+ CMS inclusive jets at 13 TeV [arXiv:2111.10431]

+ CMS 3-D *tt* cross sections [arXiv:1904.05237]:

jet x-section predictions: QCD NLO+NLL + EFT 4-quark CI (3 models tested)

• QCD parameters (NLO):

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1187 \pm 0.0033$

 $m_t^{pole} = 170.4 \pm 0.7 \,\, \mathrm{GeV}$

• CI parameters ($\Lambda = 10$ TeV):

 $c_1^L = -0.07 \pm 0.02_{exp} \pm 0.01_{mod+par}$

SM +BSM obtained simultaneously !

correspond to 95% exclusion limits for Λ ($c_1 = -1$):

LL : $\Lambda > 24$ TeV ATLAS [arXiv:1703.09127]: > 22 TeV V: $\Lambda > 32$ TeV AV: $\Lambda > 31$ TeV

SUMMARY

- LHC remains a QCD machine : proton structure does matter
- Precision of the QCD parameters and PDFs defines LHC discovery potential
- Top quark and Jet production best instruments to test Standard Model
- ... and pave the way towards global interpretation in terms of New Physics

THANKS FOR LISTENING !