Searching for BSM physics with low-energy bound states: spin-polarized atoms and neutrons

KIT Particle Physics Colloquium, 28 April 2022 Skyler Degenkolb

Case 1: trapped neutron interferometry

Low-Energy Precision Physics

Physikalisches Institut Universität Heidelberg

Case 2: nuclear spin gyroscopes

Our motivation, and a sense of scale

(2) Challenge the second: observation time

"Never measure anything but frequency"

–Arthur Schawlow (1981 Physics Nobel Prize)

But... how to store or cool ensembles?

Wave optics, with massive particles!

"Cold" beams: O(500 m/s)

particles fly through most experiments in milliseconds

"Ultracold" traps: O(5 m/s)

particles stored for minutes (>10⁵ ms)

Well, suppose the scale of new physics is far above the SM...

...or imagine we couldn't access the heavy gauge bosons we already know

If the scale of new physics is >> TeV, it looks the same whether we probe it at TeV or neV!

"Permanent Electric Dipole Moment" = ?

Quantum eigenfrequencies:

$$\hbar\omega_E \propto -dm{S}\cdotm{E}$$

Classical moments:

$$\mathbf{d} = \int \mathbf{r} \rho(\mathbf{r}) d\mathbf{r}$$
$$\boldsymbol{\mu} = \frac{1}{2} \int \mathbf{r} \times \mathbf{J}(\mathbf{r}) d\mathbf{r}$$

$$\hbar\omega_B \propto -\mu oldsymbol{S} \cdot oldsymbol{B}$$

...or, "a warm-up for non-relativistic quantum methods"

$$\frac{1}{\sqrt{2}}\left(\left|1\right\rangle\pm\left|2\right\rangle\right)$$

 $E_{\pm} = E_0 + \sqrt{A^2 + d^2 E^2}$

$$\frac{1}{\sqrt{2}}\left(\left|1\right\rangle\pm\left|2\right\rangle\right)$$

$$\frac{1}{\sqrt{2}}\left(\left|1\right\rangle\pm\left|2\right\rangle\right)$$

$$\frac{1}{\sqrt{2}}\left(\left|1\right\rangle\pm\left|2\right\rangle\right)$$

New Physics, in Familiar Terms

- Non-conservation of *P* and *T* already apparent in EDM term
- Consistency with zero vs. consistency with SM

A Taxonomy of Form Factors*

*which are not just for composite particles!

A Taxonomy of Form Factors

Summary of Motivation

Problem: 1 extra baryon in every 10^9

- Asymmetry: $\eta = \frac{n_B n_{\bar{B}}}{n_{\gamma}}$
- n_{γ} comes from CMB decoupling
- Actually normalize to entropy density *s*, since universe expands

Requirements: Sakharov's criteria

- Baryon-number (B) violation
- C and CP-violation
- Departure from thermal equilibrium

Solution: ???

- No complex antimatter nuclei
- No annihilation fronts
- No adequate symmetry-breaking

Prediction:

- New *CP*-violating physics
- Coupling to Standard Model baryons
- Polarization of bound states

Naïve estimate for generic new physics:

$$d_n \propto \frac{m_q}{\Lambda^2} \cdot e \cdot \phi_{\rm CPV}$$

Current experiments: 10⁻²⁶ e cm $\longrightarrow \Lambda \sim 10-100 {\rm ~TeV}$

Naïve estimate for generic new physics:

$$d_n \propto \frac{m_q}{\Lambda^2} \cdot e \cdot \phi_{\rm CPV}$$

Current experiments: 10⁻²⁶ e cm $\longrightarrow \Lambda \sim 10-100~{\rm TeV}$

Standard Model CKM: 10⁻³² e cm

Standard Model QCD: ??? $\longrightarrow d_n \approx (10^{-16} e \text{ cm})\bar{\theta}$

Naïve estimate for generic new physics:

$$d_n \propto \frac{m_q}{\Lambda^2} \cdot e \cdot \phi_{\rm CPV}$$

Current experiments: 10⁻²⁶ e cm $\longrightarrow \Lambda \sim 10-100~{\rm TeV}$

Standard Model CKM: 10⁻³² e cm Standard Model QCD: ???

Naïve estimate for generic new physics:

$$d_n \propto \frac{m_q}{\Lambda^2} \cdot e \cdot \phi_{\rm CPV}$$

Current experiments: 10⁻²⁶ e cm $\longrightarrow \Lambda \sim 10-100~{\rm TeV}$

Standard Model CKM: 10⁻³² e cm Standard Model QCD: ???

Neutron EDM from CP-violating pion couplings:

Pospelov & Ritz, Annals of Physics 318 (2005): 119-169

Many Parameters / Many Experiments

Sensitivity: System:	Paramagnetic	Diamagnetic	"Particle"
Trap	Tl, Cs, PbO, HfF⁺, Fr, BaF,	¹⁹⁹ Hg, ¹²⁹ Xe, ²²⁵ Ra, Rn, Pa, RaO,	n (ultra-cold)
Beam	YbF, ThO, WC	TIF	n (cold)
Storage ring	TaO⁺	?	p, d, ³ He ⁺⁺ , μ,

Other: solid state (Gd₃Ga₅O₁₂, Eu_{0.5}Ba_{0.5}TiO₃), colliders (τ , Λ , ν , ...), crystal (n scattering on quartz), ...

Un-natural Units; Orders of Magnitude

$$10^{-26}e \text{ cm} \times \frac{1 \text{ MV}}{m} \times \frac{1}{2\pi\hbar} = 24 \text{ nHz}$$
$$\frac{1}{24 \text{ hours}} = 11.6 \ \mu\text{Hz}$$
$$\frac{1}{15 \text{ min}} = 1 \text{ mHz}$$
$$\mu_{\text{N}} \times \frac{1\mu\text{T}}{2\pi\hbar} = 8 \text{ Hz}$$
$$\mu_{\text{B}} \times \frac{1\mu\text{T}}{2\pi\hbar} = 14 \text{ kHz}$$

$$1 \ e \ cm = 10^{13} e \ fm$$

$$1 \text{ neV} = 1 \frac{\text{GeV}}{c^2} \times 1 \text{ cm} \times g$$

Some recent experimental EDM limits:

 $\begin{array}{l} n: \ |d| < 1.8 \times 10^{-26} \ e \ {\rm cm} \ (90\% \ {\rm C.L.}) \\ \\ ^{129}{\rm Xe:} \ |d| < 1.4 \times 10^{-27} \ e \ {\rm cm} \ (95\% \ {\rm C.L.}) \\ \\ {\rm ThO:} \ |d| < 1.1 \times 10^{-29} \ e \ {\rm cm} \ (90\% \ {\rm C.L.}) \end{array}$

How could you measure an EDM?

$$\hbar(\omega_+ - \omega_-) = 4dE$$

... up to drift, gradients, etc.

Remember it is "locked" to the spin

Spin-precession based magnetometry:

- $E = -\boldsymbol{\mu} \cdot \boldsymbol{B}$
- $au = \mu imes B$
- $\mu = \gamma L \rightarrow \omega_L = -\gamma B$

Time evolution from Bloch equations:

 $\frac{d \boldsymbol{\mu}}{dt} = \gamma \boldsymbol{\mu} \times \boldsymbol{B} - (\text{relaxation terms})$

Sensitivity from: $\Delta E \Delta t \geq \hbar/2$

- relaxation limits measurement time
- many particles \rightarrow many measurements

EDM fundamental sensitivity:

$$\left|\delta\omega\right| = \frac{\left|dE\right|}{\hbar F} \qquad (\Delta m_F = 1)$$

Cornell and Wieman... Nobel 2001, Rev. Mod. Phys. 74, 875 (2002)

vious initial step toward understanding dynamical behavior. Second, in experimental physics a precision measurement is almost always a frequency measurement, and the easiest way to study an effect with precision is to find an observable frequency that is sensitive to that effect. In the case of dilute-gas BEC, the observed fre-

Time-Domain Interferometry

Ramsey's method to measure frequencies*:

*we'll come back to *frequency* vs. *phase*

How could you measure an EDM?

*we'll come back to *frequency* vs. *phase*

What if we could measure continuously?

So which system should you measure?

The one where you can discover an EDM, of course!

- M. Ramsey-Musolf

The HeXe Experiment

Use the best magnetic shields available (at least to start with...)

The HeXe Experiment

The HeXe Experiment

A rapidly-moving field!

Our result from HeXe:

 $d_A(^{129}\text{Xe}) = (1.4 \pm 6.6_{\text{stat}} \pm 2.0_{\text{syst}}) \times 10^{-28} \ e \text{ cm}$

Phys. Rev. Lett. 123, 143003 (2019)

Near-simultaneous from MiXed:

 $d_{\rm Xe} = (-4.7 \pm 6.4) \cdot 10^{-28} \ e {\rm cm}$

Phys. Rev. A 100, 022505 (2019)

A rapidly-moving field!

150 d_{Xe} (10⁻²⁸ ecm) 100 50 50 - 100 - 150 - 200 2 3 8 9 5 6 7 run#

Our result from HeXe:

 $d_A(^{129}\text{Xe}) = (1.4 \pm 6.6_{\text{stat}} \pm 2.0_{\text{syst}}) \times 10^{-28} \ e \text{ cm}$

Phys. Rev. Lett. 123, 143003 (2019)

Near-simultaneous from MiXed:

 $d_{\rm Xe} = (-4.7 \pm 6.4) \cdot 10^{-28} \ e {\rm cm}$

Phys. Rev. A 100, 022505 (2019)

A United Future: collective experience

A contrast: neutrons disappear faster!

Magnetic fields would be good for loss... bad for systematics

EPJ Web of Conferences 219, 02006 (2019)

- Double chamber Ramsey interferometer at room temperature (but $T_{UCN} \sim 5$ mK)
- ¹⁹⁹Hg magnetometers with few-fT resolution
- Cs magnetometers (also at high voltage)
- Magnetic shielding factor: 6×10⁶ at 1 mHz
- Simultaneous spin detection for up/down
- SuperSUN UCN source at ILL in 2 phases: Phase I: unpolarized UCN with 80 neV peak Phase II: polarized UCN, magnetic storage
- Ongoing installation of parts, commissioning with UCN production in 2023-2024

EPJ Web of Conferences 219, 02006 (2019)

Much lower statistics!

Statistical sensitivity:	Frequency measurement:
$\sigma(d_n) \gtrsim \frac{\hbar}{2\alpha \mathbf{E} T \sqrt{N}}$	$ \delta\omega = \frac{ dE }{\hbar F}$

SuperSUN	Phase I		
Saturated source			
density [cm ⁻³]	330		
Diluted density [cm ⁻³]	63		
Density in cells [cm ⁻³]	3.9		
PanEDM Sensitivity $[1\sigma, e \text{ cm}]$			
Per run	5.5×10^{-25}		
Per day	3.8×10^{-26}		
Per 100 days	3.8×10^{-27}		

D. Wurm, PhD 2021

D. Wurm, PhD 2021

EPJ Web of Conferences 219, 02006 (2019)

- 1: EDM cells23: HV feed45: Inner shield67: Outer shield door
- 2: Vac. Chamber
 4: B₀ & B₁ coil
 6: Outer shield

PanEDM @ ILL, 2021

Rev. Sci. Inst. 85(7), 075106 (2014) J. Appl. Phys. 117(18), 183903 (2015)

EPJ Web of Conferences 219, 02006 (2019)

D. Wurm, PhD 2021

Reality always looks messier!

SuperSUN-PanEDM Interface

D. Wurm, PhD 2021

- Figure of merit for production: $\tau \cdot \int d^3 \mathbf{k} \left(1 e^{-n\sigma l(\mathbf{k})}\right) \frac{d\Phi}{d\lambda}\Big|_{8.9\text{\AA}}$
- Note: partial mean free path $\lambda_{\rm "UCN"} \sim 10$ km, while $\lambda_{\rm tot} \sim 10$ m
- Loss for a 3m converter: factor 10 (unused CN beam)
- Loss for *ex-situ* storage: factor 100 (UCN extraction/transport/detection)

SuperSUN Neutron Source: Cutaway

UCN out

The next generation... scaling up!

Ultracold neutron (UCN) detection with polarizationsensitivity, via applied magnetic fields partially cancelling the neutron-optical potential for one spin state. Various readout mechanisms to be explored.

 $(\rightarrow] \leftarrow] \leftarrow]$

Thematic Recap

Questions?

what-if.xkcd.com

Special thanks to:

U. Schmidt, Heidelberg Heidelberg mechanical workshop Heidelberg technical design office

Institut Laue-Langevin, NPP division Institut Laue-Langevin, SANE division

PanEDM collaboration HeXe collaboration

xkcd.com

Minimizing UCN Storage losses

PHYSICAL REVIEW C 92, 015501 (2015)

Neutron Delivery to SuperSUN

"Quantum Sensing": Spin and Energy (EPFF)

A digression on childrens' toys...

The SuperSUN Tapered Transition Guide with Irregular Octagonal Cross-Section,

"Peg"

... or the ILL22 cold neutron guides

(K. Andersen)

"Hole"

... or admittance matching

UCN out

We are still missing a tool...

"Hammer"

... or brute force solution

The complete toolset

Optimize the remaining parameters...

Optimize the remaining parameters...

...and implement the solution

• CP violation from three sources (ignoring neutrinos):

$$\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{ar{ heta}} + \mathcal{L}_{\text{BSM}}$$

• CKM CP-violation (Standard Model):

$$\mathcal{L}_{\text{CKM}} = -\frac{ig_2}{\sqrt{2}} \sum_{p,q} V^{pq} \bar{U}_L^p \mathcal{W}^+ D_L^q + \text{H.c.}$$

• Strong CP-violation (Standard Model):

$$\mathcal{L}_{\bar{\theta}} = -\frac{\alpha_S}{16\pi^2} \bar{\theta} \mathrm{Tr}(G^{\mu\nu} \tilde{G}_{\mu\nu})$$

details:

Rev. Mod. Phys. **91**, 015001 (2019) Phys. Rev. C **91**, 035502 (2015) Prog. Part. Nucl. Phys. **71**, 21 (2013)

Effective Field Theory

General Effective Lagrangian:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Dimension-Six terms for the neutron:

$$\begin{aligned} \mathscr{L}_{\text{eff}}^{(6)} &= -\frac{i}{2} \sum_{l,q} d_q \bar{q} \sigma_{\mu\nu} \gamma^5 F^{\mu\nu} q \\ &- \frac{i}{2} \sum_q \tilde{d}_q g_s \bar{q} \sigma_{\mu\nu} \gamma^5 G^{\mu\nu} q \\ &+ d_W \frac{g_s}{6} G \tilde{G} G + \sum_i C_i^{(4f)} O_i^{(4f)} \end{aligned}$$

Prog. Part. Nucl. Phys. 71, 21 (2013)

Wilson coefficient	Operator (dimension)	Number
$\bar{ heta}$	Theta term (4)	1
δ _e	Electron EDM (6)	1
Im $C^{(1,3)}_{\ell equ}$, Im $C_{\ell eqd}$	Semi-leptonic (6)	3
δ_q	Quark EDM (6)	2
$\tilde{\delta}_q$	Quark chromo EDM (6)	2
C _Ĝ	Three-gluon (6)	1
$\operatorname{Im} C_{auad}^{(1,8)}$	Four-quark (6)	2
$\operatorname{Im} C_{\varphi ud}$	Induced four-quark (6)	1
Total		13

"Global analysis"

Define a matrix α according to $d_i = \mathring{a}_i \partial_{ij} C_j$,

$$\begin{aligned} & d_{\mathrm{Hg}} \qquad d_{\mathrm{Xe}} \qquad d_{\mathrm{TIF}} \qquad d_{\mathrm{n}} \\ & \\ & \beta_{ij} = \stackrel{\acute{\theta}}{\underset{\acute{\theta}}{\overset{\circ}{}}} -2.0 \stackrel{'}{}10^{-20} \qquad -3.8 \stackrel{'}{}10^{-18} \qquad 0 \qquad 0 \stackrel{\acute{\mathsf{U}}}{\underset{\acute{\theta}}{\overset{\circ}{}}} \qquad & \\ & 0 \stackrel{'}{}0 \stackrel{'}{_{11}} -2.9 \stackrel{'}{}10^{-19} \qquad -2.2 \stackrel{'}{}10^{-19} \qquad 0 \stackrel{\acute{\mathsf{U}}}{\underset{\acute{\mathsf{U}}}} \qquad & \\ & & \\$$

$$\begin{vmatrix} C_T \\ \tilde{g}_{\pi}^0 \\ \tilde{g}_{\pi}^1 \\ d_n^{sr} \end{vmatrix} = \begin{bmatrix} -1.48 \times 10^{19} & 1.83 \times 10^{20} & -2.52 \times 10^{14} & 0 \\ -1.85 \times 10^{17} & -9.64 \times 10^{17} & 1.32 \times 10^{12} & 0 \\ -2.41 \times 10^{16} & 5.36 \times 10^{16} & -6.32 \times 10^{12} & 0 \\ 2.78 \times 10^3 & 1.44 \times 10^4 & -1.90 \times 10^{-2} & 1 \end{vmatrix} \times \begin{bmatrix} d_{Hg} \\ d_{Xe} \\ d_{TlF} \\ d_n \end{bmatrix}$$

...and invert it:

So what is the situation today?

So what is the situation today?

What does it mean, if we see it?

It's not so simple after all...

 Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it*

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Hamiltonian of the charge-system (no EDM)

*Schiff: Phys. Rev. **132**, 2194 (1963) J. Engel: elegant formulation used here

• Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Add constituent EDMs As a perturbation...

$$\mathbf{d}_{ ext{tot}} = \sum_i \mathbf{d}_i$$

(sum over constituents)

• Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$

Add constituent EDMs As a perturbation...

$$\mathbf{d}_{ ext{tot}} = \sum_i \mathbf{d}_i$$

(sum over constituents)

$$H = H_0 - \sum \mathbf{d} \cdot \mathbf{E}$$
$$= H_0 + \sum \mathbf{d} \cdot \frac{\nabla U(\mathbf{r})}{q}$$
$$= H_0 + \sum \frac{i}{q} [\mathbf{d} \cdot \mathbf{p}, H_0]$$

Now see what effect this has...

• Schiff's theorem: the field due to an EDM induces a displacement of the bound charges, which exactly cancels it

$$H_0 = \sum \frac{p^2}{2m} + U(\mathbf{r})$$
$$H = H_0 - \sum \mathbf{d} \cdot \mathbf{E}$$
$$= H_0 + \sum \mathbf{d} \cdot \frac{\nabla U(\mathbf{r})}{q}$$
$$= H_0 + \sum \frac{i}{a} [\mathbf{d} \cdot \mathbf{p}, H_0]$$

Eigenstates receive an energy shift due to the perturbation:

$$|0\rangle \rightarrow |\tilde{0}\rangle = |0\rangle + \sum_{n} \frac{|n\rangle \langle n| \sum \frac{i}{q} [\mathbf{d} \cdot \mathbf{p}, H_{0}] |0\rangle}{E_{0} - E_{n}}$$
$$= \left(1 + \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p}\right) |0\rangle$$

It's not so simple after all...

• What is the total, observable, dipole moment after this shift?

$$\begin{split} \tilde{\mathbf{d}} &= \sum \mathbf{d} + \langle \tilde{0} | \sum q \mathbf{r} | \tilde{0} \rangle \\ &= \sum \mathbf{d} + \langle \tilde{0} | \left(1 - \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p} \right) \sum q \mathbf{r} \left(1 + \sum \frac{i}{q} \mathbf{d} \cdot \mathbf{p} \right) | \tilde{0} \rangle \\ &= \sum \mathbf{d} + i \langle 0 | \left[\sum q \mathbf{r}, \sum \frac{1}{q} \mathbf{d} \cdot \mathbf{p} \right] | 0 \rangle \\ &= \sum \mathbf{d} - \sum \mathbf{d} \\ &= 0 \end{split}$$

But some details can save us!

- Schiff's theorem assumes:
 - pointlike particles \rightarrow *incorrect for nuclei*

$$oldsymbol{S} = rac{1}{10} \left\langle r^2 oldsymbol{d}
ight
angle - rac{1}{6Z} \left\langle r^2
ight
angle \left\langle oldsymbol{d}
ight
angle$$

...see Prog. Part. Nucl. Phys. **71**, 21 (2013)

• non-relativistic treatment → *incorrect for atomic electrons*

$$U_{\text{lab}} = -\boldsymbol{d}_{\text{lab}} \cdot \boldsymbol{E} = -\boldsymbol{d}_{\text{rest}} \cdot \boldsymbol{E} + \frac{\gamma}{1+\gamma} (\boldsymbol{\beta} \cdot \boldsymbol{d}) (\boldsymbol{\beta} \cdot \boldsymbol{E})$$

...see American Journal of Physics 75, 532 (2007)

Analysis methods

HeXe EDM @TUM/PTB... ...laid groundwork for SuperSUN/PanEDM @ILL

• Gave a reference point for what it takes to go from concept to result in a new type of EDM experiment... obviously less complex than nEDM, but still with significant equipment and technique overlap

TABLE I.	Summary	of	EDM	results	and	systematic	effects
discussed in	the text.						

	2017 (e cm)	2018 (<i>e</i> cm)
EDM	7.2×10^{-28}	0.9×10^{-28}
Statistical error	23.5×10^{-28}	6.8×10^{-28}
Systematic Source		
Leakage current	1.2×10^{-28}	4.5×10^{-31}
Charging currents	1.7×10^{-29}	1.2×10^{-29}
Cell motion (rotation)	4.2×10^{-29}	4.0×10^{-29}
Cell motion (translation)	$2.6 imes 10^{-28}$	1.9×10^{-28}
Comagnetometer drift	2.6×10^{-28}	4.0×10^{-29}
$ \vec{E} ^2$ effects	1.2×10^{-29}	2.2×10^{-30}
$ \vec{E} $ uncertainty	$2.6 imes 10^{-29}$	9.4×10^{-30}
Geometric phase	$\leq 2 \times 10^{-31}$	$\leq 2 \times 10^{-31}$
Total Systematic Error	$3.9 imes 10^{-28}$	2.0×10^{-28}

Measuring the ¹²⁹Xe EDM at Heidelberg PI

