

Summary

Dieter Zeppenfeld, KIT Multi Boson Interactions 2017, Karlsruhe

KIT Center Elementary Particle and Astroparticle Physics - KCETA

www.kit.edu

Many great talks, covering experiment and theory

- New experimental results on many fronts
 - VV production: Lee, Gomber
 - · VBS: Lorenzo Martinez, Naimuddin
 - VVV and Higgs: Brun, Helary, Vanlaer
 - Searches and techniques: Mozer, Xi
- Monte Carlo generators and their theoretical basis: Kilian, Mimasu, Rauch, Schumann
- Models of BSM: Butter, Delgado, Pomarol, Riva, Wulzer,
- Progress on precision calculations:
 - NNLO QCD corrections: Grazzini
 - NLO EW corrections: Pellen
- Future accelerators: Roloff

Good interaction/discussions between theory and experiment

Cross Sections

3

August 2017

+ Diboson production at LHC

- Test the eletroweak sector of the standard model (SM)
 - Large cross section of multiboson production at LHC in pp collisions
- Clean signature and small branching ratio for vector bosons decaying leptonically
- Major background in searches for new physics and Higgs measurements
- Sensitive to theoretical calculation
 - Large NLO QCD corrections at high center-of-mass energy
 - Non-negligible NNLO QCD and NLO QED corrections
- Sensitive to anomalous triple gauge couplings (aTGCs)
 - Consequence of the non-Abelain nature of the SU(2) X U(1) symmetry
 - Value of couplings are fixed in SM
 - Any measured deviation from the SM prediction would be indication of new physics

Gomber

Lee

Charged TGCs and *L*ww

 Parameterisation of possible charged TGCs that is Lorentz invariant and obeys charge conservation: (V = Z or γ)

Lee

EFT Approach

• An alternative framework for describing modifications of diboson production is an EFT that is assumed to be valid below an energy scale ∧, formed by adding higher-dimension operators to the SM Lagrangian:

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathscr{O}_j + \dots$$

• There are three CP-conserving dimension-6 operators, with coefficients that are zero in the SM, and are related to the LEP-constrained aTGC parameters.

2

$$O_W = (D_\mu \Phi)^{\dagger} W^{\mu\nu} (D_\nu \Phi), \qquad \qquad \frac{c_W}{\Lambda^2} = \frac{2}{m_Z^2} \Delta g_1^Z, \\ O_B = (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi), \qquad \qquad \frac{c_B}{\Lambda^2} = \frac{2}{m_W^2} \Delta \kappa_\gamma - \frac{2}{m_Z^2} \Delta g_1^Z \\ O_{WWW} = Tr[W_{\mu\nu} W^{\nu\rho} W_{\rho}^{\mu}]. \qquad \qquad \frac{c_{WWW}}{\Lambda^2} = \frac{2}{3g^2 m_W^2} \lambda.$$

• Since the LHC results have now surpassed LEP/Tevatron limits, the LHC aGC Taskforce recommends to now move towards using the dimension-6 EFT operators in our results.

Claire A. Lee

9

Cross sections agree with SM expectations

Lee

Current Status of Diboson Measurements

Coupling	Parameter	Channel
WWγ	$\lambda_{y},\Delta\kappa_{y}$	WW,W y
WWZ	$\lambda_Z,\Delta\kappa_Z,\Delta g_1^Z$	WW,WZ

Current Status of Charged aTGC Limits

July 2017		CNS	—													
	Central Eit Value	ATLAS							July 2017	Cantral	CMB ATLAS					
	The Tendre	LEP	—		Channel	Limits	∫ Ldt	ſS	-	Fit Value	DO		Channel	Limite	Ĺŧæ	G
	-		1 - 1	-	W ₇	[-4.1e-01, 4.6e-01]	4.6 fb ⁻¹	7 TeV	Ar				WW	[-4.3e-02, 4.3e-02]	4.6 fb ⁻¹	7 TeV
Δκγ	-				Wy	[-3.8e-01, 2.9e-01]	5.0 fb ¹	7 TeV	Δ _{NZ}			-	WW	[-2.5e-02, 2.0e-02] [-6.0e-02, 4.6e-02]	20.3 fb ⁻¹ 19.4 fb ⁻¹	8 TeV 8 TeV
		-			ww	[-2.1e-01, 2.2e-01]	4.9 fb ⁻¹	7 TeV					WZ	[-1.3e-01, 2.4e-01]	33.6 fb ⁻¹	8,13 TeV
		- i - i			ww	[-1.3e-01, 9.5e-02]	19.4 fb ⁻¹	8 TeV					WZ	[-2.1e-01, 2.5e-01] [-9.0e-02, 1.0e-01]	19.6 fb ⁻¹	8 TeV 7 TeV
		-			wv	[-2.1e-01, 2.2e-01]	4.6 fb ¹	7 TeV			- i F		wv	[-4.3e-02, 3.3e-02]	5.0 fb ⁻¹	7 TeV
			<u> </u>		WV (high	[-1.1e-01, 1.3e-01]	20.2 fb ⁻¹	8 TeV				•	LEP Comb.	[-4.08-02, 4.18-02] [-7.4e-02, 5.1e-02]	2.3 fb ⁻¹	13 TeV 0.20 TeV
			i 🛏 i		WV (h-J)	[-8.1e-02, 6.4e-02]	20.2 fb ¹	8 TeV	λ_		-		ww	[-8.2e-02, 5.9e-02]	4.6 fb ¹	7 TeV
			<u> </u>		wy	[-1.1e-01, 1.4e-01]	5.0 fb ¹	7 TeV	ng		H 1		WW	[+1.9e-02, 1.9e-02] [-4.8e-02, 4.8e-02]	20.3 lb ⁻¹	7 TeV
			i 🛏 i		wv	[-4.4e-02, 6.3e-02]	19 fb ⁻¹	8 TeV				H+H	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
		H			D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV				н	WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV
			—		LEP Comb.	[-9.9e-02, 6.6e-02]	0.7 fb ¹	0.20 TeV				н	WZ	[-1.8e-02, 1.6e-02] [-3.9e-02, 4.0e-02]	19.6 fb ⁻¹	8 TeV
					Wy	[-8.5e-02, 6.1e-02]	4.6 fb ¹	7 TeV				Η, '	WV (hij)	[-2.28-02, 2.28-02]	20.2 fb ⁻¹	8 TeV
λγ			ш		Wy.	[-5.0e-02, 3.7e-02]	5.0 fb ¹	7 TeV				н	WV (h:J)	[-1.3e-02, 1.3e-02] [-3.8e-02, 3.0e-02]	20.2 15"	8 TeV 7 TeV
			́н'		ww	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV				н',	WV	[-1.10-02, 1.10-02]	19 fb ⁻¹	8 TeV
			<u> </u>		ww	[-4.8e-02, 4.8e-02]	4.9 fb ¹	7 TeV			- 1		WV D0 Comb.	[-3.9e-02, 3.9e-02] [-3.6e-02, 4.4e-02]	2.3 fb ⁻¹ 8.6 fb ⁻¹	13 TeV 1.96 TeV
			lei .		ww	[-2.4e-02. 2.4e-02]	19.4 fb ⁻¹	8 TeV				H	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
			H		wv	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV	∆g ²				ŴŴ	[-3.98-02, 5.28-02] [-1.68-02, 2.78-02]	4.6 fb ⁻¹ 20.3 fb ⁻¹	7 TeV 8 TeV
			Ц.		WV (brit)	[-2.28-02.2.28-02]	20.2 fb ⁻¹	8 TeV	- 1		· · · ·		ww	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV
			H H		WV 0s.0	[-1.3e-02, 1.3e-02]	20.2 fs ⁻¹	8 TeV				•	WZ	[-9.78-02, 2.28-02] [-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV
			- Hill		wv	[-3.8e-02. 3.0e-02]	5.0 m ⁴	7 TeV					WZ	[-1.5e-02, 3.0e-02]	33.6 fb ⁻¹	8,13 TeV
			ц.		wv	[-1.1e-02. 1.1e-02]	19 fb ⁻¹	8 TeV					WV	(-5.5e-02, 7.1e-02)	4.6 fb ⁻¹	7 TeV
			HHH I		D0 Comb.	[-3.6e-02.4.4e-02]	8.6 fb ⁻¹	1.96 TeV					WV (hd)) WV (hd))	[-2.7e-02, 4.5e-02] [-2.1e-02, 2.4e-02]	20.2 fb [*]	8 TeV
			He-I		LEP Comb	[-5.9e-02, 1.7e-02]	0.7 fb ¹	0.20 TeV				H	wv	[-8.7e-03, 2.4e-02]	19 fb ⁻¹	8 TeV
													WV D0 Comb	[-6.7e-02, 6.6e-02] [-3.4e-02, 8.4e-02]	2.3 fb ⁻¹ 8.6 fb ⁻¹	13 TeV 1.96 TeV
-	0.5		0	0.5	5	1	1.5				. –	•+-	LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV
						aTGC	Limits @9	5% C.L.		1		0		0.5		1
														aTGC I	_imits @9	5% C.L.

Lee

Vector boson scattering

The $m_h = 125$ GeV Higgs will unitarize $VV \rightarrow VV$ scattering provided it has SM hVV couplings

- \implies Check this by either
 - precise measurements of the *hVV* couplings at the light Higgs resonance
 - measurement of $VV \rightarrow VV$ differential cross sections at high p_T and invariant mass

Anomalous Quartic Gauge Couplings

Scalar operators only involve Higgs doublet

Mixed operators mix scalar and tensor

blet

$$\mathcal{L}_{S,0} = \left[(D_{\mu} \Phi)^{\dagger} D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{S,1} = \left[(D_{\mu} \Phi)^{\dagger} D^{\mu} \Phi \right] \times \left[(D_{\nu} \Phi)^{\dagger} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$$

$$\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

Dimension 8 operators: Lowest dimension operators that modify the quartic boson interactions but do not affect the two or three weak gauge boson vertices.

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Tensor operators only field strength tensors

Ref9/Phys.Rev. D74 (2006) 073005 Md. Naimuddin

- Major Backgrounds: Nonprompt leptons, WZ
- Signal strength evaluated by a simultaneous fit of signal region and WZ control region. The fit utilizes signal region with 2-D m_{jj} and m_{II} distribution and 1-D m_{jj} distribution for control region.
- Observation at 5.5 standard deviations (5.7 expected) 29/08/2017 Md. Naimuddin CMS-SMP-17-004

aQGC strategy and results - CMS: ZY ²²

- On top of baseline region:
 - * E_{Tγ}>60 GeV, ΔY>2.5, m_{ii}>400 GeV
- Likelihood ratio test on M_{Zy} distribution
- EFT dim8, Lagrangian of aQGC implemented in MadGraph
- Each coupling varied over a set of discrete values, other parameters set to 0
- Unitarity bound checked with VBFNLO
 - no form factors introduced, limits on all aQGC parameters (except FT9) are set in the unitary unsafe region

Lorenzo Martinez

aQGC Summary

July 2017	CMS ATLAS	Channel	Limite	[/dt	6
a 1.4		Wyy	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
$f_{T,0}/\Lambda^{-1}$		Why	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	i	Zyr	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	ŴŶy	[-1.8e+01, 1.8e+01]	20.2 fb ⁻¹	8 TeV
		WV _Y	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	́н'	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	H	ZY	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
	Ĥ	Ŵγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	Ĥ	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	H	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
	H	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
f /A ⁴		WVγ	[-3.6e+01, 3.6e+01]	20.2 fb ⁻¹	8 TeV
T,1 //X	H	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	н	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	Н	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	1	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
	H	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
F /A ⁴		WV _Y	[-7.2e+01, 7.2e+01]	20.2 fb ⁻¹	8 TeV
T,2 //	H	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	H	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	H-1	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	н	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	н	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
/A ⁴	H-1	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
T,5 /2 \$	H	WVγ	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
	н	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
E /A ⁴	H	WVγ	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV
т,6 22	н	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
E/A ⁴		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb ⁻¹	8 TeV
7,7 / 1	⊢−−	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
/Λ ⁴	н	Zγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
т,в / х х	н	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	Н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
/Λ ⁴	H	Zyy	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
7,9 7 7	н	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H	Zγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
	M	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-100	0	100	200)	30
		a	QGC Limits @	95% C.L	[TeV ⁻⁴]
10. 11.					
ps://twiki.ceri	n.ch/twiki/pub/CMSPi	ublic/PhysicsRe	sultsSMPaTGC	/aQGC_ft	.pdf

Z→(II) ɣɣ

First experimental observation (>5 σ) for triboson production at hadron collider reported by ATLAS in 2016!

Fiducial definition:

Cuts Lepton

ATLAS:

 $\ell^+\ell^-\gamma\gamma$ $p_T^{\ell} > 25 \text{ GeV}$ $|\eta^{\ell}| < 2.47$ Boson $m_{\ell^+\ell^-} > 40 \text{ GeV}$ Photon $E_{\tau\tau}^{\gamma} > 15 \text{ GeV}$ $|\eta^{\gamma}| < 2.37$ $\Delta R(\ell, \gamma) > 0.4$ $\Delta R(\gamma, \gamma) > 0.4$ $\epsilon_{h}^{p} < 0.5$ Jet $p_T^{\text{jet}} > 30 \text{ GeV}, |\eta^{\text{jet}}| < 4.5$ $\Delta R(\text{jet}, \ell/\gamma) > 0.3$ $\Delta R(\text{jet}, \gamma) > 0.3$ Inclusive : $N_{\text{jet}} \ge 0$, Exclusive : $N_{\text{jet}} = 0$

CMS:

Definition of the $Z\gamma\gamma$ fiducial region $p_{\rm T}^{\gamma} > 15 \,{\rm GeV}, |\eta^{\gamma}| < 2.5$ $p_T^{\ell} > 10 \,\text{GeV}, |\eta^{\ell}| < 2.4$ Two oppositely charged candidate leptons and two candidate photons leading $p_T^{\ell} > 20 \text{ GeV}$ $m_{\ell\ell} > 40 \,{\rm GeV}$ $\Delta R(\gamma, \gamma) > 0.4, \Delta R(\gamma, \ell) > 0.4, \text{ and } \Delta R(\ell, \ell) > 0.4$

- Backgrounds:
 - Z+jets and Zy+jet (2D fit of isolation and Photon ID), other bkg negligible.

 $VV \rightarrow W^+W^-$ with dimension 8 operators

Effect of $\mathcal{L}_{eff} = \frac{f_{M,1}}{\Lambda^4} \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$ with $T_1 = \frac{f_{M,1}}{\Lambda^4}$ constant on $pp \rightarrow W^+ W^- jj \rightarrow e^+ \nu_e \mu^- \bar{\nu}_{\mu} jj$

Small increase in cross section at high WW invariant mass??

$VV \rightarrow W^+W^-$ with dimension 8 operators

Effect of constant $T_1 = \frac{f_{M,1}}{\Lambda^4}$ on $pp \rightarrow W^+W^- jj \rightarrow e^+ \nu_e \mu^- \bar{\nu}_{\mu} jj$

- Huge increase in cross section at high *m*_{WW} is completely unphysical
- Need form factor for analysis or some other unitarization procedure

Recipe for Unitary Simplified Models

- 1. Construct interpolating model \Rightarrow amplitudes (T_0 matrix elements)
- Incorporate rescattering: Recalculate amplitudes ⇒ unitary model

$$T = \frac{\operatorname{Re} T_0}{\mathbb{1} - \frac{\mathrm{i}}{2} T_0^{\dagger}}, \quad \text{or} \quad T = \frac{1}{\operatorname{Re} \left(\frac{1}{T_0}\right) - \frac{\mathrm{i}}{2} \mathbb{1}}$$

- Asymptotic limits are automatically satisfied
- Low-energy SMEFT parameters can be computed, to match with global-fit data
- Isolates the phenomenologically relevant information contained in UV models (2HDM, Higgs portal, compositeness, ...)
- 3. Ready for off-shell evaluation and event generation

Implemented in Whizard. Similar approach also in VBFNLO

Kilian

Results

(preliminary, work in progress)

- Experiment: no excess events at high W+W+ mass
- Translation to EFT parameters depends on unitarization model
- Search also for deviations which stay well below unitarity limit for all mT

NNLO QCD corrections to VBF-Higgs

Cacciari, Dreyer, Karlberg, Salam, Zahderighijet Technology

	$\sigma^{({\sf no \ cuts})}$ [pb]	$\sigma/\sigma^{\rm NLO}$
LO	$4.032 {}^{+0.057}_{-0.069}$	1.026
NLO	$3.929 {}^{+0.024}_{-0.023}$	1
NNLO	$3.888 \substack{+0.016 \\ -0.012}$	0.990
	$\sigma^{\rm (VBF cuts)}$ [pb]	$\sigma/\sigma^{\rm NLO}$
LO	σ ^(VBF cuts) [pb] 0.957 ^{+0.066} _0.059	σ/σ ^{NLO} 1.092
LO NLO	σ ^(VBF cuts) [pb] 0.957 ^{+0.066} -0.059 0.876 ^{+0.008} -0.018	σ/σ ^{NLO} 1.092 1

central scale:

$$\mu_0^2(p_{T,H}) = \frac{M_H}{2} \sqrt{\left(\frac{M_H}{2}\right)^2 + p_{T,H}^2}$$

jets: anti- k_T , R = 0.4, $p_{T,j} > 25 \text{ GeV}$, $|y_j| < 4.5$ VBF cuts: $m_{jj} > 600 \text{ GeV}$, $\Delta y_{jj} > 4.5$, $y_{j1} \cdot y_{j2} < 0$

tiny corrections to inclusive cross section
 significant (O(-10%)) corrections in VBF region

Integrated Cross Section

VBF-*Hjj*, \sqrt{S} = 13 TeV, m_{jj} > 600 GeV, Δy_{jj} > 4.5

- Broader quark jets at NNLO generic for VBF/VBS: reduced m(jj) for small R
- R-dependence 5-10% stronger at NNLO than NLO: corresponding NNLO correction not covered by NLO scale bands

Status of NNLO QCD calculations

 $\overline{\mathbf{v}}$

 \checkmark

 \checkmark

 \checkmark

- pp→Z/γ* (→l⁺l⁻)
- pp→W(→lν)
- рр→Н
- pp→γγ
- pp→Wγ→lνγ
- pp→Zγ→l+l-γ \checkmark
- \checkmark pp→ZZ(→4l)
- pp→WW →(lvl'v') 🔽
- pp→ZZ/WW →llvv 🔽 NEW
- $pp \rightarrow WZ \rightarrow lvll$
- pp→HH

 \checkmark

validated with DYNNLO 1.5 and analytically

Grazzini

- validated against DYNNLO 1.5 and FEWZ
- validated analytically
- validated with 27NNLO (version nov. 2015)

 (\checkmark) not in first public release

WZ: inclusive cross section

S. Kallweit, D. Rathley, M. Wiesemann, MG (2016)

NNLO corrections nicely improve the agreement with the data (with the exception of CMS at 13 TeV where, however, the uncertainties are still large)

jie

Grazzini

$$pp \rightarrow 3\ell\nu$$

$$pp \rightarrow 2\ell 2\nu$$

$$pp \rightarrow WWW$$

$$pp \rightarrow \mu^{+}\nu_{\mu}e^{+}\nu_{e}jj$$
Conclusion

LO contributions at $\mathcal{O}\left(\alpha^{6}\right)$, $\mathcal{O}\left(\alpha_{s}\alpha^{5}\right)$, and $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{4}\right)$

NLO contributions at $\mathcal{O}\left(\alpha^7\right)$, $\mathcal{O}\left(\alpha_s\alpha^6\right)$, $\mathcal{O}\left(\alpha_s^2\alpha^5\right)$, and $\mathcal{O}\left(\alpha_s^3\alpha^4\right)$

→ Order $\mathcal{O}(\alpha_{s}\alpha^{6})$ and $\mathcal{O}(\alpha_{s}^{2}\alpha^{5})$: QCD and EW corrections mix → Combined measurement for pp → $\mu^{+}\nu_{\mu}e^{+}\nu_{e}jj$

Mathieu PELLEN

 $pp \rightarrow 3\ell\nu$ $pp \rightarrow 2\ell 2\nu$ $pp \rightarrow WWW$ $pp \rightarrow \mu^{+}\nu_{\mu}e^{+}\nu_{e}jj$ Conclusion

\rightarrow LO fiducial cross sections:

Order	$\mathcal{O}(\alpha^{6})$	$\mathcal{O}(\alpha_{s}\alpha)$	e ⁵)	$\mathcal{O}(\alpha$	$(a^2 \alpha^4)$	Sum			
$\sigma_{\rm LO}$ [fb]	1.4178(2)	0.04815	1.	1.6383(2)					
\rightarrow <u>NLO fiducial cross sections</u> : (normalised to $\sum \sigma_{LO}$)									
Order $\mathcal{O}(\alpha^7)$ $\mathcal{O}(\alpha_s \alpha^6)$ $\mathcal{O}(\alpha_s^2 \alpha^5)$ $\mathcal{O}(\alpha_s^3 \alpha^4)$ Sum									
$\delta\sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)		-0.0063	(4)	-0.2804(7)		
$\delta \sigma_{\rm NLO} / \sigma_{\rm LO}$ [%]	-13.2	-3.5		0.0	-0.4		-17.1		

[Biedermann, Denner, MP; 1708.00268]

- \rightarrow Large EW corrections at $\mathcal{O}(\alpha^7)$
- \rightarrow Negative corrections at $\mathcal{O}(\alpha_{s}\alpha^{6})$:

 $\sim 0.6\%$ difference with respect to VBS approximation (negelecting *s*-channel and *t*-/*u*-channel interferences)

 \rightarrow Tuned comparison against [Denner, et al.; 1209.2389] and [Jäger, et al.; 0907.0580]

 \rightarrow VBS approximation in Recola

 \rightarrow Photon PDF contribution at NLO (not included in NLO definitions):

+1.50% with LUXqed [Manohar et al.; 1607.04266]

Progress on Monte Carlo generators: Sherpa

NNLO QCD accuracy

Schumann

Comparison of SHERPA DY at NNLO QCD with FEWZ/DYNNLO

[Höche et al. Phys. Rev. D 91 (2015) 074015]

 \hookrightarrow fully differential NNLO calculation using BLACKHAT for one-loop amplitudes \hookrightarrow perfect agreement with dedicated codes FEWZ/DYNNLO

[Gavin et al. CPC 182 (2011) 2388] & [Catani et al. Phys. Rev. Lett. 103 (2009) 082001]

 \hookrightarrow largely reduced uncertainties compared to NLO

NLO QCD & EW accuracy

Schumann

NLO QCD & EW corr. to $pp \rightarrow V + jets$ SHERPA +OPENLOOPS/COLLIER

[Kallweit et al. JHEP 1504 (2015) 012 & JHEP 1604 (2016) 021]

na

QCD Parton Showers, Matching & Merging: EW corr.

MePs@Nlo QCD+EW_{virt} for W+jets with OpenLoops +Sherpa

[Kallweit et al. JHEP 1604 (2016) 021]

- \hookrightarrow NLO EW often suffers from large higher-order QCD corrections
- \hookrightarrow MEPs@NLO of $W(\rightarrow l\nu) + 0, 1, 2j$ incl. virtual EW & Born interference
- \hookrightarrow captures full QCD corrections & dominant EW effects of Sudakov-type

Inclusion of EFT couplings in MadGraph (Mimasu) SMEFT@NLO in QCD

- Merger of HELatNLO and Top/Higgs-EFT
 - Use Warsaw basis but basis independent input choice will be provided by Rosetta (also preparing an MG5_aMC plugin)

		Gauge	/Higgs		
Higgs vev &	\mathcal{O}_{arphi}	$(\varphi^{\dagger}\varphi)^{3}$	_	_	
kinetic term	$\mathcal{O}_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	_	_	
mz (cust. sym.)	$\mathcal{O}_{\varphi D}$	$(\varphi^{\dagger} D_{\mu} \varphi)^{\dagger} (\varphi^{\dagger} D_{\mu} \varphi)$	_	_	
	$\mathcal{O}_{\varphi G}$	$\varphi^{\dagger}\varphiG^{\mu\nu}_{A}G^{A}_{\mu\nu}$	$\mathcal{O}_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi G^{\mu u}_{A} \tilde{G}^{A}_{\mu u}$	
Gauge/Higgs &	$\mathcal{O}_{arphi W}$	$\varphi^\dagger \varphi W^{\mu\nu}_i W^i_{\mu\nu}$	$\mathcal{O}_{\varphi ar{W}}$	$\varphi^{\dagger}\varphi W^{\mu u}_{i}\tilde{W}^{i}_{\mu u}$	
terms/mixing	$\mathcal{O}_{\varphi B}$	$\varphi^{\dagger}\varphi B^{\mu\nu}B_{\mu\nu}$	$\mathcal{O}_{\varphi \bar{B}}$	$\varphi^{\dagger}\varphi B^{\mu\nu}\tilde{B}_{\mu\nu}$	
terns/mixing	$\mathcal{O}_{\varphi WB}$	$\varphi^{\dagger}\sigma^{i}\varphiW_{i}^{\mu\nu}B_{\mu\nu}$	$\mathcal{O}_{\varphi W \tilde{B}}$	$\varphi^{\dagger}\sigma^{i}\varphi W_{i}^{\mu\nu}\tilde{B}_{\mu\nu}$	
Triple gauge,	\mathcal{O}_{3W}	$\epsilon^{ijk}W_{i,\mu\nu}W_{j}^{\nu\rho}W_{k,\rho}^{\mu}$	$\mathcal{O}_{3\tilde{W}}$	$\epsilon^{ijk}\tilde{W}_{i,\mu\nu}W^{\nu\rho}_{j}W^{\mu}_{k,\rho}$	CP violation

29 MBI 2017: Summary Talk

HZZ anomalous coupling measurements (Brun)

• Effective Lagrangian approach for the description of BSM interactions – Higgs Characterisation Model. (JHEP 1311 (2013) 043)

$$\begin{aligned} \mathcal{L}_{0}^{V} &= \left\{ \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ &- \frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ &- \frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}. \end{aligned}$$

assuming no new BSM particles below Λ (1TeV)

• BSM couplings:

- $\kappa_{\rm HVV}$ = CP-even scalar iteration with vector bosons
- κ_{AVV} = CP-odd pseudo-scalar iteration with vector bosons
- κ_{Agg} = CP-odd BSM iteration with gluons
- assumed to be the same for W and Z, α taken as 45 degrees

• SM Higgs:

- $\kappa_{\rm SM}$ = 1, $\kappa_{\rm Hgg}$ =1 + other BSM couplings set to 0

Anomalous couplings: (ATLAS)

• Results :

Theory

Butter: SFITTER

- $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ -symmetry, SM particles
- Dim6: 59 baryon/lepton number conserving operators
- P and C even operators
- Data driven approach

Dimension 6 operators

$$\mathcal{O}_{GG} = \phi^{\dagger} \phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \qquad \mathcal{O}_{WW} = \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi \qquad \mathcal{O}_{BB} = \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi$$

$$\mathcal{O}_{W} = (D_{\mu}\phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{B} = (D_{\mu}\phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\phi) \qquad \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger}\phi\right) \partial_{\mu} \left(\phi^{\dagger}\phi\right)$$

$$\mathcal{O}_{e\phi,33} = (\phi^{\dagger}\phi)(\bar{L}_{3}\phi e_{R,3}) \qquad \mathcal{O}_{u\phi,33} = (\phi^{\dagger}\phi)(\bar{Q}_{3}\tilde{\phi}u_{R,3}) \qquad \mathcal{O}_{d\phi,33} = (\phi^{\dagger}\phi)(\bar{Q}_{3}\phi d_{R,3})$$

$$\mathcal{O}_{WWW} = \operatorname{Tr} \left(\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}\right) .$$

 \rightarrow 10 parameters for global fit, 3 parameters for TGV-only fit

Combined results

Butter: SFITTER

- First combination of all the di-boson production channels at LHC Run I in combination with Higgs channels [1604.03105]
- secondary solutions are excluded for O_{WW}, O_{BB}, O_B and O_{φ2}
- strongly increased precision for \mathcal{O}_B and \mathcal{O}_W
- *O*_{WWW} among best measured dimension—six operators
- improvements on all operators due to correlations

Conclusions

- LHC ist starting to probe aTGC's in a significant way in VV production.
- Interference region at modest m_VV allows to study relatively small deviations from SM due to theory errors below 10% from availability of NNLO QCD and NLO EW corrections → must study both small deviations and large differential cross section changes
- VBS and VVV production have much lower statistics and curently can only probe strong coupling effects in aQGC.
- Remarkable progress on the theory side also, in higher order calculations and improved event simulation.
- Fruitful interplay of experiment and theory and the fact that we are just starting to probe VBS and VVV production makes MBI physics a fun topic to work on.