

H-VV decays and Higgs Measurements

Hugues BRUN,

Université Libre de Bruxelles

on behalf of the ATLAS and CMS collaborations

Multi-Boson Interactions 2017

August 30th, 2017

Higgs production at LHC

4 production modes at LHC

 $\sigma_{H(125 \text{GeV})}$

•fusion gluon mode dominant,

fusion gluon:

•others can help <u>improving s/b</u> and are sensitive to different <u>Higgs coupling</u>

VBF:

Associated production:

top fusion:

Status after LHC run I:

• Signal Strength:

defined as the ratio of the cross section x BR with respect to the SM:

$$\mu = (\sigma.BR)_{obs}/(\sigma.BR)_{SM}$$

• Coupling modifiers (κ_i):

$$\sigma_i \times BR^f = \frac{\sigma_i(\vec{\kappa}) \times \Gamma^f(\vec{\kappa})}{\Gamma_H}$$

$$\kappa_j^2 = \sigma_j / \sigma_j^{SM}$$

$$\kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$$

ATLAS +CMS:

observed
$$\mu$$
=1.09^{+0.07}-0.07(stat)^{+0.03}-0.03(exp)^{+0.07}-0.06(th)
=1.09^{+0.11}-0.10

H→VV in run 2

- Increased cross section
- Large amount of data collected by the experiments (~36fb⁻¹ in 2016)
 ⇒ 4x increase in number of Higgs wrt run1: Enhanced sensitivity to production modes for coupling measurements
- Results presented in this talk:

	ATLAS	CMS		
H→ZZ→4I: Signal Strength/Cross section/ Couplings	<u>ATLAS-CONF-2017-043</u> (36fb-1 @ 13TeV)	<u>CMS-HIG-16-041</u> (36fb-1 @ 13TeV)		
H→ZZ→4I: Differential Cross section	<u>ATLAS-CONF-2017-032</u> (36fb-1 @ 13TeV)	<u>CMS-HIG-16-041</u> (36fb-1 @ 13TeV)		
H→ZZ→4I: Tensor/Anomalous couplings	<u>ATLAS-CONF-2017-043</u> (36fb-1 @ 13TeV)	CMS-HIG-17-011 (38.6fb-1 @ 13 TeV + comb. with run I)		
H→ZZ→4I: Mass/width	ATLAS-CONF-2017-046 (36fb-1 @ 13TeV + comb. with run I)	<u>CMS-HIG-16-041</u> (36fb-1 @ 13TeV)		
H→WW→2l2v	<u>ATLAS-CONF-2016-112</u> (5.8fb-1 @ 13TeV)	<u>CMS-PAS-HIG-16-021</u> (2.3fb-1 + 12.9fb-1 @ 13 TeV)		
Width from offshell	<u>Eur. Phys. C(2015) 75:335</u> (20.3fb-1 @ 8 TeV)	Phys. Lett B 736 (2014), 64 (5.1fb-1 @ 7 TeV + 19.7 @ 8 TeV) CMS PAS HIG-16-033		
		(12.9fb-1 @ 13 TeV)		

H→ZZ→4I: Analysis in a nutshell:

- **Signal** = 4 isolated leptons, narrow resonance in the 4l spectrum
 - 2 pairs of opposite sign, same flavour leptons (OSSF): 4e, 4μ, 2e2μ, 2μ2e
 - ZZ candidates: Z1 closest to the PDG mass, the other as Z2

• Backgrounds:

- _ Main irreducible background: non resonant qq→ZZ and $gg \rightarrow ZZ \Rightarrow$ estimated from MC (cross section corrected with higher QCD orders)
- **Reducible backgrounds:** Z+fake leptons, ttbar \Rightarrow estimated using data driven methods (control regions)
- Large s/b ratio, possibility of using kinematic discriminant based on Matrix Element

Analysis in categories:

- sensitivity to the Higgs production mode
- categories with VBF or lepton tag very pure (but much less statistic)

	Preliminary				3	5.9 fb ⁻¹ (1	3 TeV)
Events / 4 GeV					Data H(125) qq→Z gg→Z Z+X	1 1	
80	100	200	300	400 50	00	700 m ₄₇ (G	900 GeV)

681

H→ZZ→4I: Categories definition

• CMS:

- categories build using cuts+ kinematic discriminants
- signal extraction using $(m_{4l} \times K_D)$ shape

~stage o in STXS*

• ATLAS:

- categories build using cuts
- signal extraction using shape of BDT output

reduced stage 1 in STXS*

*STXS more details in P. Vanlear talk this afternoon

Signal Strength

CMS:

observed μ =1.05^{+0.15}-0.14(stat)^{+0.11}-0.09(syst)=1.05^{+0.19}-0.17 expected μ =1.00^{+0.15}-0.14(stat)^{+0.10}-0.08(syst)

Main uncertainties:

-exp: leptons efficiencies, lumi

-th: ggf cross section, ggf category migration

ATLAS:

observed μ =1.28^{+0.18}-0.17(stat)^{+0.08}-0.06(exp)^{+0.08}-0.06(th)=1.28^{+0.21}-0.19

Coupling to fermions/bosons

signal strength and coupling modifier consistent in 20 with the Standard Model expectation

Differential cross-section measurements (1)

• Fiducial cross-section:

- Kinematic and other selection cuts consistent with the sensitive detector acceptance
 - ⇒ minimise extrapolation into experimentally invisible phase space
- Correction for detector effects (resolutions, efficiencies)

Fiducial phase space definition in CMS:

Requirements for the $H o 4\ell$ fiducial phase space			
Lepton kinematics and isolation			
Leading lepton p_T	$p_{\rm T} > 20~{ m GeV}$		
Next-to-leading lepton $p_{\rm T}$	$p_{\rm T} > 10~{ m GeV}$		
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) {\rm GeV}$		
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$		
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$		
Event topology			

Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$			
Event topology				
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 \text{GeV} < m_{Z_1} < 120 \text{GeV}$			
Inv. mass of the Z_2 candidate	$12 \text{GeV} < m_{Z_2} < 120 \text{GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$			
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell^{\prime-}} > 4\mathrm{GeV}$			
Inv. mass of the selected four leptons	$105\text{GeV} < m_{4\ell} < 140\text{GeV}$			

Use of dressed leptons in both ATLAS and CMS

Differential cross-section measurements (2)

• Signal extraction:

- fit of the m4l resonance in both ATLAS and CMS (no kinematic discriminant to be model independent)

• For a given bin i:

$$\sigma_{i,fid} = \sigma_i \times A_i \times BR = \frac{N_{i,fit}}{\mathcal{L} \times C_i}$$

- A_i = acceptance at particle level
- C_i = correction for detector efficiency and resolution
- Ni,fit = number of signal events event observed

Results:

versus \sqrt{s} :

for the various 4l final states:

Differential cross section in p_T(H)

Higgs boson transverse momentum sensitive to:

- perturbative QCD calculations
- heavy additional particle in the loop would change the high Higgs p_T region
- low Higgs p_T region is sensitive to the Yukawa coupling of the b and charm quark

Differential cross section in N jets

 number of jets is sensitive to Higgs production mode composition and to gluon emission

Higgs pseudo observables (ATLAS)

- Double differential cross section m_{12} vs m_{34} is used to put limits on anomalous couplings within the pseudo-observables framework (<u>Eur. Phys. J. C (2015) 75: 128</u>)
 - Limits on contact interaction terms between Higgs and leptons left(right)-handed $\epsilon_L(\epsilon_R)$ assuming lepton flavour universality

Anomalous couplings: (CMS)

 CMS H*→ZZ→4l also performed to constrain possible anomalous couplings

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

- anomalous coupling to be tested: a2, a3, κ^2/Λ^2_{1} , $\kappa^2/(\Lambda_1^{Z\gamma})^2$
- <u>SM:</u> a1 = 1 + BSM anomalous couplings = 0
- Effectives fractional cross-section and phase can be defined from that:

$$f_{ai} = |a_i|^2 \sigma_i / \sum |a_j|^2 \sigma_j$$
, and $\phi_{ai} = \arg(a_i/a_1)$

- Use of kinematic discriminants:

$$\mathcal{D}_{ ext{alt}} = rac{\mathcal{P}_{ ext{sig}}\left(ec{\Omega}
ight)}{\mathcal{P}_{ ext{sig}}\left(ec{\Omega}
ight) + \mathcal{P}_{ ext{alt}}\left(ec{\Omega}
ight)}$$

discriminate the SM from a given alternative model obtained by having only a_i=1

$$\mathcal{D}_{ ext{int}} = rac{\mathcal{P}_{ ext{int}}\left(ec{\Omega}
ight)}{\mathcal{P}_{ ext{sig}}\left(ec{\Omega}
ight) + \mathcal{P}_{ ext{alt}}\left(ec{\Omega}
ight)}$$

contains all the information available to separate the interference component

Anomalous couplings: (CMS)

Kinematic Discriminants used for each fi scan:

Category	VBF-jet	VH-jet	Untagged
Target	$qq'VV \to qq'H \to (jj)(4\ell)$	$q\overline{q} \to VH \to (jj)(4\ell)$	${ m H} ightarrow 4\ell$
Selection	$\mathcal{D}_{2 ext{jet}}^{ ext{VBF}}$ or $\mathcal{D}_{2 ext{jet}}^{ ext{VBF,BSM}} > 0.5$	$\mathcal{D}_{ ext{2jet}}^{ ext{ZH}}$ or $\mathcal{D}_{ ext{2jet}}^{ ext{ZH,BSM}}$ or	not VBF-jet
		$\mathcal{D}_{2 ext{jet}}^{ ext{WH}}$ or $\mathcal{D}_{2 ext{jet}}^{ ext{WH,BSM}} > 0.5$	not VH-jet
f_{a3} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VBF+dec}}$, $\mathcal{D}_{CP}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{VH+dec}}$, $\mathcal{D}_{ extit{CP}}^{ ext{VH}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0-}^{ ext{dec}}$, $\mathcal{D}_{CP}^{ ext{dec}}$
f_{a2} obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{VBF+dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{VH+dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{VH}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{0h+}^{ ext{dec}}$, $\mathcal{D}_{ ext{int}}^{ ext{dec}}$
$f_{\Lambda 1}$ obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{ ext{VBF+dec}}$, $\mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{ ext{VH+dec}}$, $\mathcal{D}_{0h+}^{ ext{VH+dec}}$	$\mathcal{D}_{ m bkg}$, $\mathcal{D}_{ m \Lambda 1}^{ m dec}$, $\mathcal{D}_{ m 0 \it h+}^{ m dec}$
$f_{\Lambda 1}^{{ m Z}\gamma}$ obs.	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{Z\gamma, ext{VBF+dec}}$, $\mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}$, $\mathcal{D}_{\Lambda 1}^{ ext{Z}\gamma, ext{VH+dec}}$, $\mathcal{D}_{0h+}^{ ext{VH+dec}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{Z}\gamma, ext{dec}}, \mathcal{D}_{0h+}^{ ext{dec}}$

Results:

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.26}_{-0.09} [-0.38, 0.46]$	$0.000^{+0.010}_{-0.010} [-0.25, 0.25]$
$f_{a2}\cos(\phi_{a2})$	$0.01^{+0.12}_{-0.02} [-0.04, 0.43]$	$0.000^{+0.009}_{-0.008} [-0.06, 0.19]$
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	$0.02^{+0.08}_{-0.06} [-0.49, 0.18]$	$0.000^{+0.003}_{-0.002} [-0.60, 0.12]$
$f_{\Lambda 1}^{\mathrm{Z}\gamma}\cos(\phi_{\Lambda 1}^{\mathrm{Z}\gamma})$	$0.26^{+0.30}_{-0.35} [-0.40, 0.79]$	$0.000^{+0.019}_{-0.022} [-0.37, 0.71]$

measurements of anomalous couplings are expressed as relative cross sections

⇒ dominant uncertainty is the statistical uncertainty

No deviation from SM observed

Anomalous couplings: (ATLAS)

• Effective Lagrangian approach for the description of BSM interactions – Higgs Characterisation Model. (<u>JHEP 1311 (2013) 043</u>)

$$\mathcal{L}_{0}^{V} = \begin{cases} \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ -\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ -\frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} \chi_{0}. \end{cases}$$

assuming no new BSM particles below Λ (1TeV)

• BSM couplings:

- κ_{HVV} = CP-even scalar iteration with vector bosons
- κ_{AVV} = CP-odd pseudo-scalar iteration with vector bosons
- κ_{Agg} = CP-odd BSM iteration with gluons
- assumed to be the same for W and Z, α taken as 45 degrees

• SM Higgs:

- κ_{SM} = 1, κ_{Hgg} =1 + other BSM couplings set to 0

Anomalous couplings: (ATLAS)

• Results:

No deviation from SM observed

Mass measurement:

- CMS: based on a 3D fit:
 - m_{4l} , D_{mass} , D_{bgk}^{kin}
- ATLAS: fit on m_{4l} on a per event basis (kinematic discriminant used for event selection)

In CMS, direct constrain on the width:

 $\Gamma_{\rm H}$ < 1.1 GeV @ 95% CL (m_H floated)

In ATLAS, combination with $H\rightarrow yy$:

Main syst.: muon momentum scale, electron energy scale

H→WW→evµv (CMS)

• Signal:

- 2 leptons + MET
- only the evµv final state used (best s/b ratio)
- analysis in jet categories (0, 1, VBF)

• Backgrounds:

- irreducible = WW
- reducible = W+jets, top, DY
- Signal extraction strategy depending of the category

Analysis strategy: (CMS)

Analysis strategy: (CMS)

Result: (CMS)

category	significance	$\sigma/\sigma_{\rm SM}$
0-jet	2.7 (2.9)	$0.9 ^{+0.4}_{-0.3}$
1-jet	2.1 (2.5)	$1.1 {}^{+0.4}_{-0.4}$
2-jet	2.0 (1.0)	$1.3^{+1.0}_{-1.0}$
VBF 2-jet	2.2 (1.5)	$1.4 ^{\ +0.8}_{\ -0.8}$
VH 2-jet	1.0 (0.4)	$2.1^{\ +2.3}_{\ -2.2}$
WH 3-lep	0.0 (0.5)	$-1.4 {}^{+1.5}_{-1.5}$
combination	4.3 (4.1)	$1.05^{+0.27}_{-0.25}$

Signal strength: Combined with 2015 data (for $m_H=125GeV$):

$$\mu$$
=1.05±0.26

$$= 1.05\pm0.25(stat.)\pm0.03(th.)\pm0.07(syst.)$$

$$2015 \; data \; \mu = 0.89_{{}_{\text{-}0.31}}{}^{\text{+}0.44}$$

2016 data
$$\mu = 1.4_{-0.3}^{+0.3}$$

ATLAS H→WW @ 13 TeV

- Analysis done for the VBF and WH productions
 - VBF: e/μ pair + 2 jet, VBF categorisation with a BDT (+'central jet veto' + 'outside-lepton veto')
 - WH: Three leptons ($\Sigma q = \pm 1$) + MET, 2 signal region to cope with different background composition 'Z-dominated' and 'Z-depleted'

Indirect Constraints on Higgs Width

From off-shell measurement to Higgs width

- Off-Shell production of the Higgs boson in VV gives interesting extra information about the coupling structure of the Higgs boson
 - Also sensitive to possible new physics that changes the interaction between the Higgs and the SM particles in this region
- Off-shell cross section does not depend on total width (Γ_H) as $\sigma_{On\text{-shell}}$ does:

$$\frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}} = \mu_{\text{off-shell}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{V,\text{off-shell}}^2$$

$$\frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}} = \mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H/\Gamma_H^{\text{SM}}}$$

- In the SM, assuming that the on peak and the off peak couplings are scaling the same, combined measurement of $\mu_{on\text{-shell}}$ and $\mu_{off\text{-shell}}$, can be interpreted as a limit on Γ_H

- →In the high mass region, interference between gg→H*→VV and gg→VV is sizeable and negative in SM
- ⇒Similar for qq →VV + 2 jet and VBF production

Analysis in a nutshell:

• Off shell region:

- H→ZZ→4l: $m_{4l}>220$ GeV
- H→ZZ→2l2υ: ATLAS: 350GeV<m_T<1TeV, CMS: 180GeV<mT<1TeV
- $H \rightarrow WW \rightarrow ev\mu v$: use of m_T and m_{ll}

Off-shell signal extraction:

- H→ZZ→4l: binned maximum-likelihood using kinematic discriminant (+ m4l for CMS)
- $_{-}$ H→ZZ→2l2 $_{\cup}$: binned maximum-likelihood fit to transverse mass m_T
- H→WW→evµv: MVA or (m_T, m_{ll}) depending of the dataset and jet category (CMS) or maximum-likelihood fit is using the event yields in the signal region and in control regions (ATLAS)

Analysis in a nutshell:

- Scanning off-shell cross-section with signal strength:
 - H→ZZ→4l: binned maximum-likelihood using kinematic discriminant (+ m4l for CMS)

Expected event rate
$$= \mu_{GF} r \mathcal{P}_{H, \, \text{off-shell}}^{gg} + \sqrt{\mu_{GF} r} \mathcal{P}_{\text{int}}^{gg} + \mathcal{P}_{\text{bkg}}^{gg}$$

$$+ \mu_{VBF} r \mathcal{P}_{H, \, \text{off-shell}}^{VBF} + \sqrt{\mu_{VBF} r} \mathcal{P}_{\text{int}}^{VBF} + \mathcal{P}_{\text{bkg}}^{VBF}$$

$$r = \Gamma_{H} / \Gamma_{H}^{SM}$$

$$+ \mu_{GF} \mathcal{P}_{H, \, \text{on-shell}}^{gg} + \mu_{VBF} \mathcal{P}_{H, \, \text{on-shell}}^{VBF} + \mathcal{P}_{\text{bkg}}^{q\overline{q}} + \mathcal{P}_{\text{other bkg}}^{q\overline{q}}$$

- Systematics from theory are the dominants:
 - QCD scale uncertainty for gg→H*→VV and qq→VV
 - PDF for qq→VV and gg→VV processes
 - Uncertainty due to unknown k-factor for the gg→VV
 - ▶ ATLAS: result as a function of $R_{H*}^B = \frac{K(gg \to VV)}{K(gg \to H* \to VV)}$
 - CMS: assumes same signal NNLO K-factor for the bkg and adds a 10% syst uncertainties
 - Additional 30% uncertainty considered for the interference terms for ATLAS

Results: Limit on Higgs Width (CMS)

 $\Gamma_{\rm H}$ < 13 MeV @ 95% CL (expected $\Gamma_{\rm H}$ < 26 MeV)

- limit obtained under the assumption $\mu_{gg}^{ZZ}/\mu_{gg}^{WW} = \mu_{VBF}^{ZZ}/\mu_{VBF}^{WW}$
 - relaxing it brings the limit @95% CL to $\Gamma_{\rm H}$ < 15 MeV
- WW decay channel alone: $\Gamma_{\rm H}$ < 26 MeV (expected 66 MeV)

 ZZ decay channel alone: $\Gamma_{\rm H}$ < 22 MeV
 (expected 33 MeV)
- p-value of the observed limit = 7.4 %

Results: Limit on Higgs Width (ATLAS)

- Limit on Γ_H can be obtained by combining the on-shell with the off-shell signal strength measurement
 - μ_{ggH} and μ_{VBF} profiled on the data
 - assume same on-shell and off-shell couplings $(\kappa_{g/V, \text{ on-shell}} = \kappa_{g/V, \text{ off-shell}})$

 Γ_{H} < 22.7 MeV @ 95% CL for $R_{H^{*}B}$ = 1 (expected Γ_{H} < 33 MeV)

• Assuming $\Gamma_H = \Gamma_H^{SM}$ and $\kappa_{V, \text{ on-shell}} = \kappa_{V, \text{ off-shell}}$, can interpret result as a limit on $R_{gg} = \kappa_{g, \text{ on-shell}}/\kappa_{g, \text{ off-shell}}$

 $R_{gg} < 6.0 @ 95\% CL for R_{H^*}^B = 1$ (expected $R_{gg} < 9.0$)

First Results with 2016 data

- In $H^* \rightarrow ZZ \rightarrow 4l$ channel:
 - Constraint on the width from the first 12.9 fb-1 of 2016 data analysed
 - Addition in the high mass region of a 2 jet category, sensitive to VBF

 $\Gamma_{\rm H}$ < 41 MeV @ 95% CL (expected $\Gamma_{\rm H}$ < 32 MeV) $\underline{\rm best\text{-}fit}$ = 0.01^{+0.014}-0.01 GeV

Conclusion:

- Already interesting results on H→VV available with run 2 data for both ATLAS and CMS
 - precision already comparable compared to run 1 results.
- At present, measurements an properties compatible with the SM Higgs Boson
- Results are still statistically limited
 - by the end of the Run 2, more that ~100fb-1 expected
 ⇒ precision of the measurement still expected to improve

BackUp