

BSM searches in resolved di-boson topologies

MBI 2017

Matthias Mozer

Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie

Motivation

- New Physics searches in di-boson channels don't have unified motivation
 - => common theme is hierarchy problem:
 - => why is the ewk scale so much lower the Plank scale
- Potential answers

	spin-0	spin-1	spin-2
⇒ extra-dimensions (ADD, RS-models)	Radion	-	Graviton
⇒ extended gauge groups (partial compositeness)	-	Z',W'	-
⇒ extended Higgs sectors (2HDM, scalar mixing)	H± A,H	-	-

Motivation

- New Physics searches in di-boson channels don't have unified motivation
 - => common theme is hierarchy problem:
 - => why is the ewk scale so much lower the Plank scale
- Potential answers

⇒ extra-dimensions (ADD, RS-models)

- ⇒ extended gauge groups (partial compositeness)
- ⇒ extended Higgs sectors (2HDM, scalar mixing...)

spin-0

spin-1

spin-2

Graviton

Radion

Z',W'

 H^{\pm}

A,H

Motivation

- Explicit models are a nice starting point for BSM searches
- But need to prepared for the unexpected
- Example: 750 GeV "signal"
- Doesn't really fit any of the models discussed above
- Still generated ~500 theory papers explaining the excess

Keep your eyes open for surprises!

Analysis Strategies

- Simple "bump hunt"
- Signal/background interference effects
- VBF vs qq vs gg initial states
 - => additional jet tags
 - => final state distributions dependent on initial state
- Likelihood discriminants multivariate discriminators deep learning

Boosted vs Resolved

Low masses:
Background suppression is key
=> leptonic channels

High masses:
low signal cross sections,
needs highest branching ratios
=> hadronic decays

Channels to Consider

Results from LHC on:

- YY
- Ζγ
- WW
- ZZ
- WZ

Not covered:

- Boosted Hadronic decays (see Zhaoxu's talk)
- Final states with Higgs bosons (see Pascal's talk)
- Run I (8 TeV) data

Results + Conclusion

- No BSM physics discovered
- Come back next year to more data

Backup

9 MBI 2017, Karlsruhe

Di-Photon Searches

Continuation of controversial 750 GeV excess analysis

Two spin-hypotheses:

Spin 0: $pt_{y} > 0.4/0.3 \text{ m}_{yy}$

=> very central

Spin 2: flat pt_v cut (55GeV)

Interesting feature:

Includes search for non-resonant high mass enhancement

Interpreted in ADD extra dimension mode

[arxiv:170-04147]

Diphoton limits

- Still some excess around 700 GeV (2.8σ for 2016 data)
- 10x integrated luminosity compared to 2015 data
 =>would expect significance to grow in case of real signal

[arxiv:170-04147]

Di-Photon Searches

Similar analysis in CMS Very straight forward:

- → no signal dependent categories
- → simple bump hunt o smoothly falling background
- => Aids in potential re-interpretation

No excess observed

Ζγ

- Immediately related to γγ by ewk symmetry breaking
 - => sensitive to similar models
 - => Spin 0 Higgs-like hypothesis
 - => KK Graviton
- Compatible with SM

Ζγ

- At high mass, limits driven by signal acceptance: low Z→ℓℓ branching fraction => Add hadronic Z decays for high mass
- Use a number of discriminants to enrich Z (see Zhaoxu's talk for details)
 - => jet mass
 - => 2-prong substructure (N-subjettiness)
 - => subjet b-tags

[CMS-EXO-17-005]

$ZZ \rightarrow \ell\ell\nu\nu$

Karlsruher Institut für Technologie

CONF-2017-058

- Good compromise between branching ratio and background
- Largest background from SM diboson production
- Major effort to understand MET mismeasurements, determine MET corrections
- Cannot reconstruct
 resonance mass
 => use transverse mass
 => still poor resolution
- Looking for Bulk Graviton and 2HDM

ZZ → 4ℓ

- Combined by ATLAS with 4\ell channel
- Very low background, but lacks signal acceptance at high mass
- Analysis similar to Run I high mass Higgs search
 VBF category
 - => interference effect sin signal shape
- Particularly useful for 2HDM
- Some excess in 4l channel, but not significant in combination with llvv

600

800

400

95% C.L. limit on $\sigma(gg \to H) \times BR(H \to ZZ)$ [pb]

 10^{-2}

200

 m_H [GeV]

1200

$ZZ \rightarrow 2\ell 2q$

- High branching ratio, but high backgrounds
- Boosted at high mass, but needs resolved (dijet) analysis to reach lower masses
- Interpretation in Higgs-like (ATLAS+CMS) and Graviton Models (CMS), HVT (ATLAS)
- Includes VBF categories, b-tags (for Z → qq)

$ZZ \rightarrow 2q2v$

Karlsruher Institut für Technologie

- 2l2q analysis combined with 2q2v by ATLAS
- Similar Analysis in CMS using only boosted FS
- Not easy to have proper combined VBF + DY-like analysis
 - => requires assumptions on relative coupling strengths (increased model dep.)
 - => requires calculation of DY-like resonance production + 2jets (ideally in NLO) to compute feed-down

$VV \rightarrow VVV$

- analysis closely follow Run I high mass Higgs boson searches
- Categories in lepton flavor (top background)
- categories in jet multiplicities to suppress top backgrounds and tag VBF production
- Sophisticated signal parameterization including interference effects
- Looking for ewk singlet interference model
- Limits set for a number of signal width hypothesis

[CM-HIG-16-023]

[ATLAS-CONF-2016-074

WW → ℓvqq

- Very similar to ZZ → 2ℓ2q
 - => similar analysis techniques
 - => similar interpretation (Graviton, HVT)
- ATLAS study contains VBF channel
 - => no combined limit

CONF-2017-051]

VBF-Only searches

- What if new physics ONLY couples to electroweak sector?
 - => no tree-level production from quarks/gluons
 - => even loop-induced couplings suppressed for gluon initial states
- VBF processes become dominant production mode
 - => search for resonances in VBF modes
- strategies similar to typical Higgs searches in VBF
 - => require two additional jets
 - => wide separation in angle
 - => high dijet invariant mass

H[±] → WZ (VBF)

[arxiv:1705-02942]

- Usual 2HDM H[±] still has substantial coupling to fermions
- Looking for charged member of additional SU(2) triplet, e.g. (Georgi-Machacek)
- Cross-section governed by contribution of triplet vev to boson mass: sinθ_H

WW \rightarrow $\ell \nu \ell \nu$ (VBF)

- Very generic resonance parameterization (effective chiral Lagrangian) according to spin / isospin, coupling to longitudinal boson components
- Very wide for high masses and observable couplings
 - => limits search range to <500GeV

[ATLAS-CONF-2016-053]

Results + Conclusion II

- No BSM physics discovered
- Come back next year to more data
- Large number of final states covered
- Many searches reasonably generic, possible to reinterpret in generic resonance scenarios
- Up to the TeV range, limits are now very strong, limiting options for BSM physics:
 - => could hide by being weakly coupled
 - => could hide by being very heavy
- Expect some more good results soon: 2016 data analysis not yet all finished
 - => jump in centre-of-mass energy 8 →13TeVdrives gain in sensitivity for Run II vs Run I
 - => less dramatic improvements expected for 2017 vs 2016 data