

Results on VBS production for neutral diboson channels from ATLAS and CMS and constraints on aQGCs

Narei LORENZO MARTINEZ - CNRS-IN2P3 (Annecy)

August 29th, 2017 - MBI Workshop - Karlsruhe

Introduction

- After Higgs discovery 5 years ago, no deviation found in its properties
- Vector Boson Scattering (VBS) important test of electroweak sector and EW Symmetry Breaking
 - Interaction with Higgs boson unitarizes the scattering amplitude -> is unitarization complete ?
 - Complementary to Higgs boson property studies

- Yet no sign of new physics with direct searches @LHC
- VBS allows indirect search by studying anomalous quartic gauge couplings (aQGC)

Small-radius (hope-radius) join are denoted by the feiter j (3,

Introduction

Experimentally VBS is challenging *

- ✤ very low rate (O(fb))
- Iarge background, generally from strong production of same final state -> scales Very small XS, but good S/B as α_s^2 / α^2
- large experimental and theory uncertainties *
- VBS observed only very recently !

What can help? *

- use of leptons / photons final states (clean channels, more limited backgrounds)
- use of 13 TeV dataset : XS multiplied by a factor ~3-4
- use of control regions to reduce systematic uncertainties
- Topological selection to reduce QCD background

Phenomenology of VBS

- * As experimentalist, we cannot access pure VBS and pure quartic couplings
 - VBS with triple and quartic couplings

Phenomenology of VBS

- VBS: has typical final states topology
 - 1. Two hadronic jets in forward and backward regions with very high energy (*tagging jets*)
 - 2. Hadronic activity suppressed between the two jets (rapidity gap) due to absence of colour flow between interacting partons
 - 3. Two bosons produced ~back-to-back

 $\Delta \eta$

ATLAS and CMSVBS studies

CMS

8 TeV

8 TeV

13 TeV

Datasets

W[±]W[±]

W[±]Z

Wγ

 $Z\gamma$

ZZ

- ✤ ATLAS: 8 TeV (20.2 fb-1)
- ✤ CMS: 8 TeV (19.7 fb-1) and 13 TeV (35.9 fb-1)

ATLAS

8 TeV

8 TeV

8 TeV

8 TeV

Channels studied: **%**

Best EW/QCD

Largest XS

Low reduc. bkg

WV semi-lept. only access to aQGCs

- All possible VBS final states studied @ LHC *
 - except $\gamma\gamma$ and W⁺W⁻, difficult due to huge bkg.
 - Can probe all operators of EFT ! *

VVjj final state	ZZ	Zy YY	W+W- WZ	₩±₩±	wy
f _{5,0} , f _{5,1}	~		~	٢	
f _{M,0} , f _{M,1} , f _{M,6} , f _{M,7}	~	~	~	~	~
fm.2, fm.3, fm.4, fm.5	~	~	~		~
f _{T,0} , f _{T,1} , f _{T,2}	~	~	~	~	~
f _{T,5} , f _{T,6} , f _{T,7}	~	~	~		~
f _{T,8} , f _{T,9}	~	~			

Anomalous quartic gauge couplings

- New physics could modify couplings between bosons, and allow neutral couplings ZZZγ, ZZγγ, Zγγγ (forbidden in SM) -> aQGCs
- Presence of aQGC enhance EW XS at high-energy tails
 - use variable that carry the energy of the system: transverse momentum or mass
- ATLAS and CMS common choice: effective field theory (EFT) with higher order dimensions operators
 - Dim8 is lowest-dimension operators inducing only QGC without TGC vertices
 - VBS not competitive with dibosons/VBF for dim6 constraints.

Two approaches

- * $\alpha_4 \alpha_5$: coefficients of the two linearly independent dim4 operators contributing to aQGCs (ATLAS WZ, ssWW, WV semilept.)
- C,P conserving dim8 EFT operators that maintains SU(2)_L x U(1)_Y gauge symmetry of the type f_i/Λ_4 (ATLAS $Z\gamma$, CMS $Z\gamma$, W γ , ssWW, ZZ)

$$\mathcal{L} = \mathcal{L}^{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i} + \sum_{j} \frac{f_{j}}{\Lambda^{4}} O_{j}$$
Dim 8 operators Dim 8 operators New physics scale

Anomalous quartic gauge couplings

- Dim8 operators: 3 types:
 - pure Higgs field (fS) pure longitudinal (cannot induce couplings with photons)

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$
$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

- pure Field-strength tensor (fT) pure transverse
- Mixed Higgs-field-strength (fM), mixed longitudinal-transverse

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right] \\\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right] \\\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} \\\mathcal{L}_{M,5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} \\\mathcal{L}_{M,6} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right] \\\mathcal{L}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right] \\\mathcal{M}_{M,7} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Exemple of conversion to α4,α5 framework:

$$\frac{f_{S,0(1)}}{\Lambda^4} = \alpha_{4(5)} \times \frac{16}{v^4},$$

for the WWZZ vertex

Only neutral

couplings

8

Unitarity

- Nonzero value in aQGCs lead to tree-level unitarity violation at high energy
- Could be unitarised with a form factor but depends on detailed structure of new physics -> we don't know it !
- * In $\alpha_4 \alpha_5$ framework, unitarisation done with **K-matrix method** (in 5000 p WHIZARD) -> ATLAS 4000
- f_{M0}/A⁴ [TeV⁴] MC expected ± 20 3000 In dim8 operators, two approaches ± 1σ 2000 Unitarity bounds 1000 1. **ATLAS**: use **form factor** to restore unitarity Allowed 0E $f_i(\hat{s}) = f_i / (1 + \hat{s} / \Lambda_{\rm FF}^2)^n$ -1000 -2000 ATLAS -3000 n=2, Λ_{FF} cut-off scale \s=8 TeV, 20.2 fb⁻¹ -4000 -5000 **0.**8 0.9 1.2 1.3 1.1 2. **CMS**: provide only **validity bound** (scattering energy at which Λ_{FF} [TeV]
 - observed limit would violate unitarity, from VBFNLO) but don't use any form factor
 - Problem: many limits are set in the unitarity unsafe region !

Argand circle

 $\hat{a}_{IJ}(s)$

Data observed

 $a_{IJ}(s)$

 $\frac{l}{2}$

VBS $Z\gamma$ +2j

ATLAS and CMS

Introduction

- Search for EW production of $Z\gamma+2j$
- **CMS** and **ATLAS**, with 8 TeV data (2012, 19.7 fb-1 and 20.2 fb-1) *
 - CMS: Z->ee,μμ Phys. Lett. B 770 (2017)
 - ✤ ATLAS, Z->ee,µµ and Z->vv for aQGCs JHEP 07 (2017) 107
- ✤ Interest:
 - can probe T8 and T9 operators, experimentally accessible only via neutral boson final states
 - Iarger XS than ZZ, clean channel, relatively low instrumental background
- Analysis strategy
 - Measurement of total $Z\gamma jj$ cross section
 - Probing VBS with Z-> ee / μμ
 - * Setting limits on aQGC with Z->ee/ $\mu\mu/\nu\nu$

QCD Dominant background

Simulation and samples

✤ Zγ+2j:

- CMS: LO MadGraph v5.1.3, matched to Parton shower based on MLM prescription.
 - ✤ 0-3 additional jets + NLO k-factor of 1.1 for m_{ii}<400 GeV for QCD.</p>
- ATLAS: LO Sherpa v1.4.5 (up to 3 add jets) and VBFNLO v2.7.1 for XS prediction
- Interference EW/QCD: treated as a systematic uncertainty:
 - * CMS: from MadGraph, 18% of EW for $400 < m_{ij} < 800$ and 11% for $m_{ij} > 800$ GeV
 - ✤ ATLAS: from MadGraph, ~7% of EW for m_{ij}>500 GeV
- aQGCs:
 - ✤ CMS: LO MadGraph v5.1.3
 - ATLAS: LO MadGraph (for efficiencies) and NLO VBFNLO (for XS prediction)

Baseline selection (charged lepton channels)¹³

		_
Objects	Particle- (Parton-) level selection	
Leptons	$p_{\rm T}^{\ell} > 25 {\rm GeV} {\rm and} \eta^{\ell} < 2.5$	AILAS
	Dressed leptons, OS charge	
Photon (kinematics)	$E_{\rm T}^{\gamma} > 15 { m GeV}, \eta^{\gamma} < 2.37$	
	$\Delta R(\ell,\gamma) > 0.4$	
Photon (isolation)	$E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\gamma}$ (no isolation)	+ m _{jj} >150 GeV
FSR cut	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \text{ GeV}$	
	$m_{\ell\ell} > 40 \mathrm{GeV}$	Remove triboson
Particle jets (Outgoing partons)	At least two jets (outgoing partons)	production
(j = jets)	$E_{\rm T}^{j(p)} > 30 \text{ GeV}, \eta^{j(p)} < 4.5$	ZγV(->jj)
(p = outgoing quarks or gluons)	$\Delta R(\ell, j(p)) > 0.3$	
	$\Delta R(\gamma, j(p)) > 0.4$	

Common selection $p_{T}^{j1,j2} > 30 \text{ GeV}, |\eta^{j1,j2}| < 4.7$ $p_{T}^{\ell 1,\ell 2} > 20 \text{ GeV}, |\eta^{\ell 1,\ell 2}| < 2.4$ $|\eta^{\gamma}| < 1.4442$ $M_{jj} > 150 \text{ GeV}$ $70 < M_{\ell \ell} < 110 \text{ GeV}$ CMS

- Differences:
- lepton $p_T (20/25 \text{ GeV})$
- Photon E_T (20-25/15 GeV)
- photon η (<1.4 / <2.37)
- m_{ll} cut ([70,110] / >40 GeV + FSR cut)

+ $E_{T\gamma}$ >20-25 GeV

Backgrounds

- 1. **QCD background dominant** in these analyses, yield validated (see later)
- 2. **Z+jets (jet faking photon):** extracted from data (not well modelled by MC) with a method based on identification quality and isolation of photon.
 - ATLAS: 3 control regions populated by events failing photon ID and/or isolation (ABCD method).
 - Shape of Z+jets found to be similar to Sherpa Zγjj (validated with Powheg and Alpgen)
 - Ratio of Z+jets/Zγjj extracted in region m_{jj}>100 GeV and used in other regions
 - ✤ 23 +/- 6% of QCD events
 - * **CMS**: select photon failing tight ID but passing looser requirements
 - get jets with similar kinematics than genuine photons
 - Calculate probability to get a fake photon in different $E_{T_{\gamma}}$ regions -> ~30% of QCD
- 3. **ttbarγ background**: from simulation
 - * **CMS**: Madgraph interfaced with Pythia (XS @ LO)
 - ATLAS: MadGraph5_aMC@NLO v5.2.1 , (XS @ NLO)
- 4. **Dibosons**: almost negligible in EW/aQGC regions, from simulation
 - * **CMS**: consider WW, WZ, ZZ with Pythia
 - * **ATLAS**: consider only WZ with Sherpa

Event yield and control plots

Events/100 GeV

Data properly described by simulation

Probing EW - CMS

- QCD/EW discriminant variables used to build an EW-enriched region, cuts optimised wrt expected significance
 - * ~38% of EW/QCD in this region in total (e+ μ)
- * Use 2-bins m_{jj} distribution : 400< m_{jj} <800 GeV and m_{jj} >800 GeV
- Combination of electron and muon channels
- Significance of both EW and EW+QCD combined
 Zγjj processes are measured
- EW fiducial cross-section also measured in fiducial region with a different selection

$400 < M_{jj} < 800 \text{GeV}$	muon	electron
Fake photon from jet	3.4 ± 0.8	1.7 ± 0.5
Other background	0.1 ± 0.1	0.1 ± 0.1
QCD Zγjj	4.8 ± 0.9	5.0 ± 1.0
EW $Z\gamma jj$	1.7 ± 0.1	1.8 ± 0.1
Total background	8.3 ± 1.2	6.8 ± 1.1
Data	13	8
	-0	U U
$M_{\rm jj} > 800 {\rm GeV}$	muon	electron
$M_{jj} > 800 \text{GeV}$ Fake photon from jet	$\frac{10}{\text{muon}}$	$\frac{\text{electron}}{0.1 \pm 0.1}$
$M_{jj} > 800 \text{GeV}$ Fake photon from jet Other background	$ muon 0.4 \pm 0.3 0 \pm 0 $	$ \begin{array}{r} \text{electron} \\ 0.1 \pm 0.1 \\ 0 \pm 0 \end{array} $
$M_{jj} > 800 \text{GeV}$ Fake photon from jet Other background QCD Z γjj	$ muon 0.4 \pm 0.3 0 \pm 0 0.4 \pm 0.1 $	electron 0.1 ± 0.1 0 ± 0 1.1 ± 0.2
$M_{jj} > 800 \text{GeV}$ Fake photon from jet Other background QCD $Z\gamma jj$ EW $Z\gamma jj$		electron 0.1 ± 0.1 0 ± 0 1.1 ± 0.2 1.8 ± 0.1
$M_{jj} > 800 \text{GeV}$ Fake photon from jet Other background QCD $Z\gamma jj$ EW $Z\gamma jj$ Total background		electron 0.1 ± 0.1 0 ± 0 1.1 ± 0.2 1.8 ± 0.1 1.2 ± 0.2

EW signal measurement	Fiducial cross section	
$p_{\rm T}^{\gamma} > 25 { m GeV}$	$p_{\rm T}^{\gamma} > 20 { m GeV}$	
$ \Delta\eta_{ m jj} >1.6$	$ \Delta\eta_{ m jj} >2.5$	Minimum FW-
$\Delta R_{\mathrm{j}\ell} > 0.3$, $\Delta R_{\mathrm{j}\mathrm{j},\gamma\mathrm{j},\gamma\ell} > 0.5$	$\Delta R_{ m jj,\gamma j,\gamma \ell,j \ell} > 0.4$	onriched solection
$ y_{Z\gamma} - (y_{j1} + y_{j2})/2 < 1.2$	$M_{\rm jj} > 400{ m GeV}$	ennimed selection
 $\Delta \phi_{Z\gamma,jj} > 2.0$ radians		
$M_{\rm jj} > 400 {\rm GeV}$ with two divided regions		
$400 < M_{ii} < 800 \text{GeV}$ and $M_{ii} > 800 \text{GeV}$		

Probing EW - ATLAS

- EW-enriched region build by adding a cut m_{jj}>500 GeV on top of baseline selection (~30% of EW/QCD)
- QCD-enriched region (150< m_{jj} <500 GeV) build to validate the QCD modelling
- Centrality of Zγ system fitted using a template fit (~44% of EW/QCD in first bin !)
- * All regions and channels (μ/e) are fitted simultaneously
- Cross-section of both EW (in SR) and EW+QCD (in SR and CR) Zγjj processes are measured

Centrality:
$$\zeta \equiv \left| \frac{\eta - \bar{\eta}_{jj}}{\Delta \eta_{jj}} \right|$$
 with $\bar{\eta}_{jj} = \frac{\eta_{j_1} + \eta_{j_2}}{2}$, $\Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2}$,

	Control region		Search	region
	$150 < m_{jj} < 500 { m GeV}$		$m_{jj} > 5$	$00 \mathrm{GeV}$
	$e^+e^-\gamma jj$	$\mu^+\mu^-\gamma jj$	$e^+e^-\gamma jj$	$\mu^+\mu^-\gamma jj$
Data	362	421	58	72
Z+jets bkg.	57 ± 16	67 ± 18	8.5 ± 2.5	9.4 ± 2.7
Other bkg. $(t\bar{t}\gamma, WZ)$	47 ± 9	46 ± 9	5.8 ± 1.1	5.0 ± 1.0
$N_{\rm data} - N_{\rm bkg}$	258 ± 24	308 ± 27	44 ± 7	58 ± 8
$N_{Z\gamma \text{-QCD}}$ (SHERPA MC)	249 ± 24	290 ± 26	37 ± 5	41 ± 5
$N_{Z\gamma \text{ EWK}}$ (SHERPA MC)	8.6 ± 0.6	9.3 ± 0.6	11.2 ± 0.8	11.6 ± 0.7
$N_{Z\gamma}$ (sherpa MC)	258 ± 25	299 ± 27	48 ± 6	53 ± 6

Validating modelling of QCD

- QCD-enriched CR built to validate modelling of QCD background
- Both CMS and ATLAS use shape from simulation

CMS:

- * control region: $150 < m_{ii} < 400$ (signal < 1%),
- extract yield of QCD from data, well reproduced by simulation, correction factor of: 1 +/- 0.22
- ✤ compatible with NLO QCD k-factor (1.1 for m_{ii} <400 GeV)</p>

* ATLAS

- * control region: 150< m_{ij} <500 GeV (signal ~ 2%)
- fit the QCD normalisation scale factor simultaneously in CR and SR
- perfect agreement with Sherpa prediction within errors.
- CR kept in fit because helps to reduce syst. on QCD: reduces total syst. unc. of EWK XS measurement in the SR from ~60% to 38%.

Systematics uncertainties

- Inputs systematics to the cross section/significance results
- Dominated by jet energy scale uncertainties, background normalisation (QCD, others) and by theory uncertainties (scales, pdf, interference)

	Source of	EWK y	ield [%]	QCD vi	eld [%]	Bkg. v	ield [%]
	uncertainty	CR	SR	CR	\mathbf{SR}	CR	\mathbf{SR}
	Trigger			0.2 (0.4)		
	Pile-up			0.	6		
ATLAS	Lepton selection			3.8(2.3)		
	Photon selection	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		l	6	fanne anna anna anna anna anna anna anna	
	Jet reconstruction	1.1	2.5	5.0	12	4.9	12
	Bkg. 2D sideband	-	-	-	-	26	26
	Total experimental	4.3(3.1)	4.9(3.8)	6.5(5.8)	13(12)	27(27)	29(29)
	Theory	5.2	8.7	5.6	3.8	5.6	3.8
6011#00	Un	containty					
Source	Un 22% (400	certainty					
QCD $Z\gamma$ + jets normalization	22% (400 <	$\langle NI_{jj} < 800$	Gev)				
	24% (M	$l_{jj} > 800 \mathrm{Ge}$	V)				
Fake photon from jet	15% (20-30 GeV)					
$(p_{\rm T}^{\gamma} {\rm dependent})$	22% (30–50 GeV)					
	49%	(>50 GeV)					
Trigger efficiency	1.2% (Z $ ightarrow \mu^+\mu$	ι), 1.7% (Ζ	$a ightarrow e^+e^-$)				
Lepton selection efficiency	$1.9\%~(\mathrm{Z} ightarrow\mu^+\mu$	ι), 1.0% (Ζ	$L ightarrow \mathrm{e^+e^-})$				
Jet energy scale and resolution	14% (M	$I_{ij} > 400 \text{Ge}^{3}$	V)				
$t\bar{t}\gamma$ cross section	2	0% [?]	Mathematical Constraints and				
Pileup modeling		1.0%				CMS	
Renormalization/	$9.0\% (400 < M_{ m jj} < 800 m G$	eV), 12% (λ	$M_{\rm ij} > 800{ m Ge}$	V) (SM)			
factorization scale (signal)	<i>"</i> 14%	6 (aQGC)	"				
PDF (signal)	$4.2\%~(400 < M_{ m jj} < 800~{ m Ge}$	eV), 2.4% (<i>N</i>	$M_{\rm jj} > 800{ m Ge}$	eV) (SM)			
	4.3%	% (aQGC)					
Interference (signal)	$18\%~(400 < M_{ m jj} < 800~{ m Ge}$	eV), 11% (<i>N</i>	$I_{jj} > 800 \text{GeV}$	V) (SM)			
Luminosity		2.6%					

Results - CMS

- EW signal significance with CL_s criterion, using 2 m_{jj} bins (400-800, >800 GeV)
- Significance for observing the EW signal (EW region)
 - ***** 3.0 σ (2.1 σ expected)
- * Signal strength extracted with binned likelihood fit over 2 m_{jj} bins * $\mu = \sigma_{obs} / \sigma_{exp} = 1.5^{+0.9}_{-0.6}$
- Significance for observing EWK+QCD : 5.7 σ (5.5 σ expected)
- Cross section in fiducial region

Process	Measured	Predicted
type	cross-section [fb]	cross-section [fb]
EWK	$1.86^{+0.90}_{-0.75}(\text{stat})^{+0.34}_{-0.26}(\text{syst}) \pm 0.05(\text{lumi})$	$1.27 \pm 0.11 (\text{scale}) \pm 0.05 (\text{pdf})$
EWK+QCD	$5.94^{+1.53}_{-1.35}(\text{stat})^{+0.43}_{-0.37}(\text{syst}) \pm 0.13(\text{lumi})$	$5.05 \pm 1.22 (\text{scale}) \pm 0.31 (\text{pdf})$

Results - ATLAS

aQGC strategy and results - CMS

- On top of baseline region:
 - * $E_{T\gamma}$ >60 GeV, ΔY >2.5, m_{ii} >400 GeV
- * Likelihood ratio test on $M_{Z\gamma}$ distribution
- EFT dim8, Lagrangian of aQGC implemented in MadGraph
- Each coupling varied over a set of discrete values, other parameters set to 0
- Unitarity bound checked with VBFNLO
 - no form factors introduced, limits on all aQGC parameters (except FT9) are set in the unitary unsafe region

Observed limits (TeV $^{-4}$)	Expected limits (TeV $^{-4}$)
$-71 < f_{\rm M0} / \Lambda^4 < 75$	$-109 < f_{\rm M0} / \Lambda^4 < 111$
$-190 < f_{\rm M1} / \Lambda^4 < 182$	$-281 < f_{\rm M1} / \Lambda^4 < 280$
$-32 < f_{\rm M2} / \Lambda^4 < 31$	$-47 < f_{ m M2} / \Lambda^4 < 47$
$-58 < f_{\rm M3} / \Lambda^4 < 59$	$-87 < f_{ m M3} / \Lambda^4 < 87$
$-3.8 < f_{ m T0} / \Lambda^4 < 3.4$	$-5.1 < f_{\rm T0} / \Lambda^4 < 5.1$
$-4.4 < f_{ m T1} / \Lambda^4 < 4.4$	$-6.5 < f_{ m T1} / \Lambda^4 < 6.5$
$-9.9 < f_{\rm T2} / \Lambda^4 < 9.0$	$-14.0 < f_{\rm T2} / \Lambda^4 < 14.5$
$-1.8 < f_{\rm T8} / \Lambda^4 < 1.8$	$-2.7 < f_{ m T8} / \Lambda^4 < 2.7$
$-4.0 < f_{\rm T9} / \Lambda^4 < 4.0$	$-6.0 < f_{\rm T9} / \Lambda^4 < 6.0$

aQGC strategy - ATLAS

aQGC results - ATLAS

- Upper limit on cross section (log-likelihood fit, CL_s technique) :
 - * **1.06 fb** (0.99 exp.) ννγ and **1.03 fb** (1.01 fb exp.) *b*-θ-γ
- Parametrisation: parity conserving EFT Lagrangian with dim8 operators + Form factor (FF) to restore unitarity at very high √s
- ✤ One dim. profile likelihood fit -> 95%CL intervals
- Three channels are combined
- * Best expected interval: vv γ , improved by 10-30% when including &// γ
- ✤ Uncertainties dominated by QCD renormalization and factorization scale (~8%)
- Expected intervals are a factor ~2 better than CMS (without FF)

	95% CL intervals	Measured $[\text{TeV}^{-4}]$	Expected $[\text{TeV}^{-4}]$	$\Lambda_{\rm FF}$ [TeV]
	f_{T9}/Λ^4	$[-4.1, 4.2] \times 10^3$	$[-2.9, 3.0] \times 10^3$	
	f_{T8}/Λ^4	$[-1.9, 2.1] \times 10^3$	$[-1.2, 1.7] \times 10^3$	
	f_{T0}/Λ^4	$[-1.9, 1.6] \times 10^1$	$[-1.6, 1.3] \times 10^1$	
n = 0	f_{M0}/Λ^4	$[-1.6, 1.8] \times 10^2$	$[-1.4, 1.5] \times 10^2$	
	f_{M1}/Λ^4	$[-3.5, 3.4] imes 10^2$	$[-3.0, 2.9] \times 10^2$	
	f_{M2}/Λ^4	$[-8.9, 8.9] imes 10^2$	$[-7.5, 7.5] \times 10^2$	
	f_{M3}/Λ^4	$[-1.7, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$	
	f_{T9}/Λ^4	$[-6.9, 6.9] \times 10^4$	$[-5.4, 5.3] \times 10^4$	0.7
	f_{T8}/Λ^4	$[-3.4, 3.3] \times 10^4$	$[-2.6, 2.5] \times 10^4$	0.7
n=2	f_{T0}/Λ^4	$[-7.2, 6.1] \times 10^1$	$[-6.1, 5.0] \times 10^1$	1.7
	f_{M0}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-8.8, 8.8] \times 10^2$	1.0
	f_{M1}/Λ^4	$[-1.6, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$	1.2
	f_{M2}/Λ^4	$[-1.1, 1.1] \times 10^4$	$[-9.2, 9.6] \times 10^3$	0.7
	f_{M3}/Λ^4	$[-1.6, 1.6] \times 10^4$	$[-1.4, 1.3] \times 10^4$	0.8

VBS ZZ+2j

CMS

Introduction

- Search for EW production of ZZ+2j fully leptonic decay of Z (electron and muons)
- CMS, 13 TeV data (2015 and 2016, 35.9 fb-1) , <pileup> ~23

Interests:

- Cross section very low (<1fb), but very clean channel, relatively less instrumental backgrounds than in other channels
- Can probe T8 and T9 operators, experimentally accessible only via neutral boson final states
- Analysis strategy
 - Use a TMVA discriminant to extract the EW component, from a baseline region
 - Use this region to extract aQGC limits

Simulation and MC samples

- ZZ+2j EWK: MadGraph5_aMC @NLO (nominal) and Phantom @LO, include tribosons
- ✤ ZZ+2j QCD:
 - MadGraph5_aMC@NLO, up to 2 ongoing partons at born level, merging with FxFx scheme (scale 30 GeV). Leptonic decay: MadSpin
 - MCFM for gg->ZZjj (loop induced) and check with MadGraph5_aMC@NLO
- ✤ Interference EWK/QCD: <1% , neglected</p>
- aQGC: LO Madgraph_aMC@NLO, ME reweighing to obtain grid for each of the 5 anomalous coupling constants

ZZVBS - Selection

* ZZ selection: 2 pairs of calibrated, isolated ID e/ μ opposite charge

- * m_{Z1} >40 GeV (for mass closest to m_Z) 60< m_{Z1} , m_{Z2} <120 GeV, m_{l+l} >4 GeV (for all pairs)
- In case more than one 4l candidate: candidate with m_{Z1} closest to m_Z chosen
- * Jets: $\Delta R(l,j)$ >0.4, Loose ID, p_T >30 GeV η <4.7. Energy correction
- ZZ+2j selection (used in analysis)
 - ✤ >=2 jets, m_{jj}>100 —> 5% EW, 83% QCD
- **QCD-enriched region** (not used, just for check)
 - * $m_{jj} < 400 \text{ GeV} \mid \Delta Y j j < 2.4$
- VBS-enriched region (not used, just for check)
 - * m_{jj} >400 GeV and Δ Yjj>2.4

Backgrounds, event yields

- * **QCD is the dominant background** in this analysis, yield checked while extracting EW
- Irreducible bkg (4 prompt and isolated leptons):
 - ttbarZ, WWZ, from MadGraph5_aMC@NLO (small)
- Reducible bkg (secondary leptons, jets misID as leptons)
 - ✤ Z+jets, ttbar, WZ+jets
 - Extracted with data-driven method with 2 control samples (ZZ selection with 1 and 2 leptons failing isolation and ID)
 - * Bkg yield in SR obtained by weighting number of events in CR by lepton misID rate

Probing EW

- Multivariate classifier used to separate signal and QCD using the following variables:
 - * $m_{jj'} \Delta Y_{jj'} m_{ZZ}$
 - Zeppenfeld variables of the 2 bosons:

$$\eta_{Z_i}^* = \eta_{Z_i} - (\eta_{jet1} + \eta_{jet2})/2$$

- * $pT_{jj} / |pT_{j1}| + |pT_{j2}|$
- * pT balance:

$$p_T^{bal} = \frac{|p_T^{Z1} + p_T^{Z2} + p_T^{j1} + p_T^{j2}|}{|p_T^{Z1}| + |p_T^{Z2}| + |p_T^{j1}| + |p_T^{j2}|}$$

 BDT performance checked with a ME based approach: provides similar separation b/w signal and backgrounds

Systematics

- ✤ JES: 4-20% (low-high BDT score). JER: 8%
- ✤ Leptons: 2-6%
- ✤ Reducible bkg norm. : 40% (only yield)
- ✤ Scales for QCD (EW): 10 (7)% ; PDF: 6-9%
- Propagated through the classifier -> variation of MVA output, used in stat. analysis

Validating modelling of QCD

- Understanding of QCD production of ZZ pair and kinematic of associated jets crucial
 - 1. Dependence of the cross section on the jet multiplicity, important test of QCD corrections to ZZ production -> **overall good**, better with Powheg and in central region
 - In the QCD-enriched region, check agreement of the BDT score between data and simulation -> overall good agreement

Results

- Full BDT spectrum fitted with max. likelihood template
 (signal and irreducible bkg from sim, reduc. bkg from data)
- Template shape and norm, vary within unc. (treated as NP in fit and profiled)

$$\mu = 1.39^{+0.72}_{-0.57} (\text{stat})^{+0.46}_{-0.31} (\text{syst}) = 1.39^{+0.86}_{-0.65}$$

- Background-only hypothesis excluded with
 - 1.6 σ expected
 - 2.7 σ observed
- * Fiducial cross section in fiducial volume $\sigma_{\rm fid} = 0.40^{+0.21}_{-0.16} ({\rm stat})^{+0.13}_{-0.09} ({\rm syst}) \,{\rm fb}$ $0.29 \pm 0.03 \,{\rm fb} \,{\rm expected}$

32

aQGCs

- ZZjj can probe to all operators
 - in particular sensitive to T0,T1,T2 (SU_L(2) gauge fields)
 - and T8 and T9 (U_Y(1) field) -> experimentally accessible only with neutral boson final states
- * m_{ZZ} used as a probe
- Quadratic increase of yields with anomalous couplings modelled with parabolic function
- Same statistic methodology as for EW signal strength
 - Wald Gaussian and Wilk's theorem to derive 95%CL limits
- Individual limits, setting other to zero, no form factor
- Unitarity bound: using VBFNLO framework)

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$\overline{f_{T_0}/\Lambda^4}$	-0.53	0.51	-0.46	0.44	0.6
f_{T_1}/Λ^4	-0.72	0.71	-0.61	0.61	0.6
f_{T_2}/Λ^4	-1.4	1.4	-1.2	1.2	0.6
f_{T_8}/Λ^4	-0.99	0.99	-0.84	0.84	2.8
f_{T_9}/Λ^4	-2.1	2.1	-1.8	1.8	2.9

Conclusions

- Lot of information obtained from the study of neutral VBS final states (total QCD+EW cross section in several phase spaces, EW crosssection, validation of QCD modelling, ...)
- In particular on the fT8 and ft9 operators of the EFT, most stringent limits set on them.
- Very small cross-sections !
- Study of 13 TeV ongoing, new results on Zγ and ZZ to come soon
 will also allow to check dependence of XS with √s for a given process

Back-up

à

VBS Zy: more details (vv channel)

Objects	Particle- (Parton-) level selection
Neutrinos	$E_{\rm T}^{\nu\bar{\nu}} > 100 { m ~GeV}$
Photon (kinematics)	$E_{\rm T}^{\gamma} > 150 { m GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell,\gamma) > 0.4$
Photon (isolation)	$E_{\mathrm{T}}^{\mathrm{iso}} < 0.5 \cdot E_{\mathrm{T}}^{\gamma}$
Generator-level jets (Outgoing quarks)	At least two jets (quarks)
$(pp \to Z\gamma qq)$	$E_{\rm T}^{j(q)} > 30 \text{ GeV}, \eta^{j(q)} < 4.5$
	$\Delta R(\gamma, j(q)) > 0.4$
Event kinematic	$ \Delta\phi(E_{\mathrm{T}}^{\nu\bar{\nu}},\gamma jj(qq)) > \frac{3\pi}{4}$
selection	$ \Delta \phi(E_{\mathrm{T}}^{ u ar{ u}}, \gamma) > rac{\pi}{2}$
	$ \Delta \phi(E_{\rm T}^{\nu\bar{\nu}}, j(q)) > 1$
	$E_{\mathrm{T}}^{\gamma} > 150 \mathrm{GeV}$
	$ \Delta y_{jj(qq)} > 2.5$
	ζ_γ ; 0.3
	$p_{\mathrm{T}}^{\mathrm{balance}} < 0.1$
	$m_{jj(qq)} > 600 \text{ GeV}$

VBS Zy: more details (results)

Zvvg VBS

Backgrounds determination

- Major backgrounds
 - $(Z \rightarrow vv)\gamma QCD from MC (for aQGC limits).$
 - A combined cross section is measured together with VBS Znng in a aQGC sensitive region
 - W+y shape from MC with normalization from data in CR region with inversed charged lepton veto. Same technique as in Zy(y) analysis.
 - Extrapolation to aQGC phase space done using MC. Stability for MC vs data Transfer Factor (TF) checked for VBS cuts.
 - ► W→ev data-driven method: fake-rate from Z peak, e+E_T(miss) control region. Same technique as in $Z\gamma(\gamma)$ analysis.
 - ▶ No extrapolation, since background can be estimated for VBS region directly.
 - Z+jets data-driven method: ABCD based on photon ID and Isolation. Same technique as in Zy channel.
 - Same extrapolation as for $Z(II)\gamma$.
 - > γ +jet data-driven method: ABCD based on E_T (miss) and $\Delta \phi(E_T$ (miss), jets).
 - Extrapolation was done using data control region. R_MC stability was checked vs VBS topology cuts.

Comparison of ATLAS and CMS Z_γ aQGC limits

	Limits 95% CL	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\rightarrow \ell \bar{\ell} / \nu \bar{\nu}) \gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
(result without FF to compare with CMS)	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\rightarrow \ell \bar{\ell})\gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71,75]	[-109, 111]
arXiv: 1702.03025	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
	f_{M2}/Λ^4	[-32, 31]	[-47,47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]

ZZ Feynman diagrams

Comparisons of intervals for fM operators⁴¹

May 2017	CMS ATLAS	without FF	Channel	Limits	∫ <i>L</i> dt	v s	
f_{M0}/Λ^4	⊨-4		WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV	
			Ζγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV	
		Ζγ ΑΙ LAS	Wγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV	
	н		ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV	
			ss WW	[-6.0e+00, 5.9e+00]	35.9 fb ⁻¹	13 TeV	
Keug _{Ab} /s		***************************************	γγ→VVVV	[-2.8e+01, 2.8e+01]	20.2 fb ⁻¹	8 TeV	
	I		γγ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV	
$f_{M,1}/\Lambda^4$			WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV	
			Ζγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV	
	· · · · ·	Ι ΖΥΑΙΙΑΟ	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV	
	н		ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV	
			ss WW	[-8.7e+00, 9.1e+00]	35.9 fb ⁻¹	13 TeV	
tana je d			γγ→WW	[-1.1e+02, 1.0e+02]	20.2 fb ⁻¹	8 TeV	
	н		γγ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV	
$f_{M,2} / \Lambda^4$			Ζγγ	[-5.1e+02, 5.1e+02]	20.3 fb ⁻¹	8 TeV	
			Wγγ	[-7.0e+02, 6.8e+02]	19.4 fb ⁻¹	8 TeV	
			Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV	
		Ζν ΑΤΙΑς	Ζγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV	
	H		Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV	
$f_{M,3} / \Lambda^4$			Ζγγ	[-8.5e+02, 9.2e+02]	20.3 fb ⁻¹	8 TeV	
			Wγγ	[-1.2e+03, 1.2e+03]	19.4 fb ⁻¹	8 TeV	
			Wγγ	[-4.4e+02, 4.7e+02]	20.3 fb ⁻¹	8 TeV	
		Ζν ΑΤΙΑς	Ζγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV	
	н	21112110	Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV	
$f_{M,4} / \Lambda^4$	H		Ψγ	[-4.0e+01, 4.0e+01]	<u>19.7 fb⁻¹</u>	<u>8 TeV</u>	
$f_{M,5}/\Lambda^4$	H		Ψγ	[-6.5e+01, 6.5e+01]	<u>19.7 fb⁻¹</u>	<u>8 TeV</u>	
$f_{M,6} / \Lambda^4$			Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV	
	н		ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV	
	H		ss WW	[-1.2e+01, 1.2e+01]	<u>35.9 fb⁻¹</u>	13 TeV	
$f_{M,7} / \Lambda^4$		1	Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV	
	н		ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV	
			ss WW	[-1.3e+01, 1.3e+01]	35.9 fb⁻¹	13 TeV	
-2000	2000 0		2000		4000	4000	
	95% C.L.	[TeV ⁻⁴]					

Comparisons of intervals for fT operators⁴²

May 2017	ATLAS without FF	Channel	Limits	∫∠dt	√s				
f _{T,D} /Λ ⁴	l	Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV				
	H	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 ⊺eV				
		Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV				
		WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ^{.1}	8 TeV				
		Ζγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV				
		Zγ	[-3.4e+00, 3.4e+00]	29.2 fb ^{.1}	8 TeV				
		Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 ⊺eV				
	⊢	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ^{.1}	8 TeV				
	Н	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ^{.1}	13 TeV				
	Н	Z Z	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV				
f _{T.1} /Λ ⁴	⊢ −−1	Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ^{.1}	8 TeV				
	⊢−−−	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV				
		ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV				
	H	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV				
	Н	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV				
f _{T2} /Λ ⁴	⊢−−−−−	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV				
	↓	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV				
		ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV				
	H	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV				
	H	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV				
f _{т.5} /Л ⁴		Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV				
		Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV				
f _{τ,s} /Λ ⁴		Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV				
f _{T.7} /Λ ⁴	├ ───┤	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV				
f _{T,B} /Λ ⁴	H	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 ⊺eV				
		Ζγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV				
	Н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV				
f _{τ.p} /Λ ⁴		Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV				
	⊢ −−− ↓	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ^{.1}	8 TeV				
	⊨−−−	Ζγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV				
		ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ^{.1}	13 TeV				
-50	0	50	10	100					
•••	-	-	~ 0.00 Limits @050/ 01 (T-)/41						