# New Strong Dynamics at the TeV scale and its impact on dibosons

Alex Pomarol, UAB & IFAE (Barcelona)

## Why Strong Dynamics at $\Lambda$ ~TeV ? To explain why $m_H \ll M_P \sim 10^{19} \text{ GeV}$ As in QCD: $lpha_{s}$ E $M_{\mathbf{P}}$ $\Lambda_{\rm QCD}$

Explains why  $\Lambda_{
m QCD} << M_P$  and the origin of most hadron masses



#### Why Strong Dynamics at $\Lambda$ ~TeV ?



It could explain why  $m_H \lesssim \Lambda_* \sim {
m TeV} \ll M_P$ — Composite Higgs



<u>The Higgs</u>, the lightest of the new strong resonances, as pions in QCD: they are <u>Pseudo-Goldstone Bosons</u> (PGB) Dealing with strong dynamics...

#### Beyond the lamp-post:



But it's possible provide a <u>characterization</u> of the expected signals

(as in the 60', experiments should be driving the field)

#### **Expected spectrum in Composite Higgs Scenarios**



#### **Expected spectrum in Composite Higgs Scenarios**





## Colored fermion resonances at LHC 13 TeV



## Colored fermion resonances at LHC I3 TeV



### Colored fermion resonances at LHC I3 TeV



If the new-strong sector turns out to be too heavy to detect resonances at the LHC...



If the new-strong sector turns out to be too heavy to detect resonances at the LHC...





If the new-strong sector turns out to be too heavy to detect resonances at the LHC...



LHC still <u>offers</u> the possibility to see new-physics in deviations in  $2 \rightarrow 2$  SM processes:

Even if we cannot get the resonance, we could get its tail





Friday October 16 2015

#### Effects of the resonance "tails"

Encoded in Higher-dimensional operators, e.g.  $(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$ ,  $W^{a\,\nu}_{\mu}W^{b}_{\nu\rho}W^{c\,\rho\mu}$ , ... generated after integrating out new-physics

Goal: Recognize the relevant effects

e.g. those that make the 2→2 amplitudes grow with E

#### Effects of the resonance "tails"

Encoded in Higher-dimensional operators, e.g.  $(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$ ,  $W^{a\,\nu}_{\mu}W^{b}_{\nu\rho}W^{c\,\rho\mu}$ , ... generated after integrating out new-physics

Goal: Recognize the relevant effects

e.g. those that make the 2→2 amplitudes grow with E

#### **Restrict only to dimension-6 operators?**

W. Buchmuller and D. Wyler 86 & thousands more...

Be careful that this could either be...

**Redundant:** Missing correlations

**Incomplete:** Dimension-8 operator also relevant in certain BSMs



can be <u>overcomed</u> by strong couplings:  $g_* = coupling$  of the BSM



$$rac{\mathrm{E^2}}{\Lambda^2} \ll 1$$

can be <u>overcomed</u> by strong couplings:  $g_* = coupling$  of the BSM



Weakly-coupled BSM



can be <u>overcomed</u> by strong couplings:  $g_* = coupling$  of the BSM



Weakly-coupled BSM



#### **Strongly-coupled BSM**



can be <u>overcomed</u> by strong couplings:  $g_* = coupling$  of the BSM



Weakly-coupled BSM



#### **Strongly-coupled BSM**

D. Liu, A.P., R. Rattazzi, F.Riva arXiv:1603.03064 **Example:** WT  $\overline{q}$  $\mathcal{A}_{\scriptscriptstyle{\mathrm{SM}}} \sim g^2$ Dim-4:  $Z/\gamma$ WT number of W<sub>T</sub>  $\overline{q}$ couplings  $\frac{\delta \mathcal{A}}{\mathcal{A}_{\rm SM}} \sim \frac{g_*}{g} \frac{E^2}{\Lambda^2}$ Dim-6: dictated by the number of fields:  $Z/\gamma$ Max of 2 in  $2 \rightarrow 2$ WT scattering ( $\hbar$ -counting) W<sub>T</sub>  $\frac{\delta \mathcal{A}}{\mathcal{A}_{\rm SM}} \sim \left(\frac{g_*}{g}\frac{E^2}{\Lambda^2}\right)^2$ Dim-8: WT

In the simplest Composite Higgs Models



Apart from Higgs physics, only WW-scattering is expected to grow sizably with the energy & new strong-coupling:

$$\begin{array}{c} \mathbf{W}_{\mathbf{L}} \\ \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \\ \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \\ \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \\ \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \end{array} \begin{array}{c} \mathbf{W}_{\mathbf{L}} \\ \mathbf{W}_{\mathbf{L}} \end{array} \end{array}$$

For the case for  $qq \rightarrow V_T V_T$ :



For the case for  $qq \rightarrow V_T V_T$ :



But cross-sections dominated by the transverse components:

|                 |               | $\sigma_{tot}$ | $\sigma_{LL}$ | $\sigma_{LL}/\sigma_{tot}$ |
|-----------------|---------------|----------------|---------------|----------------------------|
| q <b>q</b> →WZ: | 8 TeV         | 12 pb          | 0.73 pb       |                            |
|                 | $13 { m TeV}$ | 25  pb         | 1.5  pb       | 6%                         |

its a background for the longitudinal  $(\ell) \simeq 1.5\%$ 

WZ production give the only chance to get accuracy:

- Symmetries force  $W_T Z_T$  go to zero for  $\theta \rightarrow 90^{\circ}$
- Small background in their leptonic decays

Franceschini, Panico, AP, Riva, Wulzer, in preparation

See A. Wulzer's talk

#### Transverse components of the SU(2) gauge bosons



## How much accuracy and energy is needed?



Franceschini, Panico, AP, Riva, Wulzer

It size similar to the S-parameter bound at LEP at the per-mille:

$$-g^2 c_{\theta_W}^2 \delta g_1^Z \simeq \frac{g^2}{2} \hat{S}$$

To test  $\delta g_1^Z \sim 3 \times 10^{-3}$  rew We must be able to see a 10 % deviation of WZ-production at  $m_{WZ} > 300$  GeV (cos $\theta < 0.5$ )



#### What else can we learn from di-bosons?

#### What else can we learn from di-bosons?

New possibilities if other SM states arise from the new strong TeV-dynamics:



#### **Composite SM Vectors?**

Really? Their (gauge) coupling g is small (g/4π«I)
& corrections to their propagators small (from LEP)

But remember pions (PGB) have two different type of couplings: Large derivative-couplings:  $(\pi \partial_{\mu} \pi)^2$  (preserve  $\pi \rightarrow \pi + c$ ) Small gauge couplings:  $(\pi \partial_{\mu} \pi) A^{\mu}$  (break  $\pi \rightarrow \pi + c$ )

Possibility: Composite SM vector only with sizable field-strength interactions  $F_{\mu\nu}$ 

#### **Effective Theory of Strong Dipole Interactions**

$$A^{\mu}$$
  $\mathcal{M}_{+++++}^{++++++}$  dipole  $\gg 1/\Lambda$   
Q=1

Example: QED at  $E < m_e = Euler-Heisenberg EFT$  (only dipole int.)

#### **Effective Theory of Strong Dipole Interactions**

Example: QED at  $E < m_e = Euler-Heisenberg EFT$  (only dipole int.)

We cannot provide a real model... but a consistent (stable!) low-energy description as charge is not renormalized:

$$\mathcal{L} = \frac{M^4}{g_*^2} L\left(\frac{\partial_\mu + igA_\mu}{M}, g_*\frac{F_{\mu\nu}}{M^2}, \Phi\right)$$

We named these scenarios Remedios\*

*Remedios the Beauty was not a creature of this world* - Gabriel Garcia Marquez.

#### SYMMETRY PATTERNS

#### In the non-abelian case, e.g. $SU(2)_L$ :



#### SYMMETRY PATTERNS

#### In the non-abelian case, e.g. $SU(2)_L$ :



The inverse of a Inonu-Wigner contraction:





#### Remedios





## Remedios









#### What else can we learn from di-bosons?





#### A model-independent analysis must include dim-8 operators

## Conclusions

 New Strong dynamics at the TeV is still one of the best options for TeV-BSM:

> Don't be afraid to pursue it, even without full knowledge of the theory Nature does not care about our limitations!



- These BSMs can also be probed (possibly, the only ones!)
   in <u>di-boson production</u> at the LHC at the high-energy regime!
  - In particular,  $pp \rightarrow W_L Z_L$  the most promising

(reduced  $W_T Z_T$  in central region, but Jet veto needed) possibility to achieve EWSB SM-tests below 1%

• Other more exotic possibilities: <u>Gauge boson composite at TeV</u>:



Also pp→ W<sub>T</sub>W<sub>T</sub> important (but dim-8 operators could be as important as dim-6)