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in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-

Expected spectrum in Composite Higgs Scenarios
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Colored fermion resonances at LHC 13 TeV
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L ̸∂ qL + t̄R ̸∂ tR

+ Tr
{

Q̄ ( ̸∂ − MQ)Q
}

+ ¯̃T ( ̸∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)
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• m(X5/3) > 0.99 TeV (was 0.74 TeV @ Run-1)	

• m(B|singlet) > 0.83 TeV (was 0.69 TeV)	

• m(T|singlet) > 0.78 TeV (was 0.66 TeV)	

• sensitivity to T via H → WW* or Z → l+l-  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Even if we cannot get the resonance, 
 we could get its tail

New Resonances10 TeV

h125 GeV

LHC still offers the possibility to see new-physics in deviations 
 in 2→2 SM processes:

If the new-strong sector turns out to be too heavy 
 to detect resonances at the LHC…



Goal:  Recognize the relevant effects 

Effects of the resonance “tails”

Encoded in Higher-dimensional operators,
                            e.g.                        ,                      , …

generated after integrating out new-physics
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DµH
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OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′

2

(
H†
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DµH

)
∂νBµν

OBB = g′2|H|2BµνBµν
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Aµν
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3!gϵabcW

a ν
µ W b

νρW
c ρµ
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LL = (L̄LσaγµLL) (L̄LσaγµLL)

Table 1. Set of CP-even dimension-6 operators that defines our basis. We are including only
the four-fermion operators that affect our observables. We omit dipole operators for fermions and

Oud
R = y†uyd(iH̃

†
↔
DµH)(ūRγµdR) since they are suppressed by light fermion Yukawas under the MFV

assumption. Also O3G is not included since it does not enter in our observables. The complete set
of operators can be found in ref. [1].

of table 1 we assume a contraction of family indices i, j inside each parenthesis, e.g.,

(Q̄LγµQL) = (Q̄i
Lγ

µQi
L), and yuQ̄LuR = yiju Q̄i

Lu
j
R, as implied by the MFV assumption at

the leading order in a Yukawa expansion. The top quark, having a large Yukawa coupling,

could depart from the MFV assumption. For this reason we will also consider the impact

of treating top operators separately.

CP-odd operators are not included in table 1, since they do not interfere with the SM

contributions to the observables that we are considering. Their Wilson coefficients only

enter quadratically in these processes and can then be neglected at the linear level that we

are working. In section 4, however, we will briefly discuss their implications for TGC and

h → V f̄f .

2.1 Experimental input values

We take the SM as defined by the 3 parameters g, g′ and v ≃ 246GeV, that we relate

with the well-measured values of the Fermi constant GF as measured in muon decays,

the fine-structure constant αem, and the Z-boson mass mZ . New physics, parametrized

through the dimension-6 operators of table 1, affects these 3 input observables. The subset

of relevant operators is
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Be careful that this could either be…

Redundant:  Missing correlations

Incomplete:  Dimension-8 operator also relevant in certain BSMs

Restrict only to dimension-6 operators?
W. Buchmuller and D. Wyler 86 
                        & thousands more…
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In the simplest Composite Higgs Models

Consequences of SILH

h  & VL ⇠ g2⇤E
2

m2
⇤

✓
1 +

E2

m2
⇤
+ . . .

◆

h-production 
& decay

⇠ ySM

✓
1 +

g2⇤v
2

m2
⇤

+ . . .

◆

good for LHC

ff̄ ! V V, V h

VTVT ! V V, V h

⇠ g2SM

✓
1 +

E2

m2
⇤
+ . . .

◆

at all scalesO(g2SM)

need  high 
precision

Friday, October 16, 2015

But small cross-sections 
at the LHC!

WL

WL

WL

WL

New Resonances10 TeV

h125 GeV & WL , ZL (Goldtones)  ⊂ Higgs doublet

Apart from Higgs physics, only WW-scattering is expected to grow 
sizably with the energy & new strong-coupling:



TGC:
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TGC:

For the case for qq→VTVT : 

●

    
VL

VL

VT

always involve a VT that is weakly coupled

Accuracy is needed to probe it!

⇠ g2E
2

⇤2
⌧ 1



But cross-sections dominated by the transverse components:

WZ production

… but transverse channels dominate the SM cross section

q′

q Z

Wlarge cross section
due to t-channel singularity

(only there for transverse)

cross sections with standard acceptance cuts:
�
tot

�
LL

�
LL

/�
tot

8 TeV 12 pb 0.73 pb
6%

13 TeV 25 pb 1.5 pb

( BR for fully-leptonic decay not included                                              )BR(WZ ! (`⌫)(``)) ' 1.5%

qq→WZ:
_

its a background for the longitudinals!

WZ production give the only chance to get accuracy: 

● Symmetries force WTZT go to zero for θ→90∘  
● Small background in their leptonic decays

Franceschini,Panico,AP,Riva,
Wulzer, in preparation

See A. Wulzer's talk

θ



SU(2)-decomposition {
WaWa

triplet:

singlet:

Antisym. V1↔V2

Sym.   V1↔V2

W+W� 2 1+ 3

W+Z 2 3

θ

✏abcW
bWc

Transverse components of the SU(2) gauge bosons

⇒  zero at θ→90∘

up to small effects from 
the U(1)Y gauge boson ⊂ Zμ

qq→V1V2
_

V1V2=

/ YL sin2 ✓W ⇠ 0.04

odd under interchange final states:  u↔t   ⇒  zero at θ→90∘^ ^



How much accuracy and energy is needed?

●

    
Z

W

W

Shift of the SM WWZ-coupling
Franceschini,Panico,AP,Riva,Wulzer

OT = 1
2

⇣
H†

$
DµH

⌘2

OW = ig
2

⇣
H†�a

$
DµH

⌘
D⌫W a

µ⌫

OB = ig0

2

⇣
H†

$
DµH

⌘
@⌫Bµ⌫

O3W = 1
3!g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫

OHB = ig0(DµH)†(D⌫H)Bµ⌫

Table 1: CP-even dimension-6 operators from universal theories relevant for our analysis.

2.1 Universal theories

Universal theories represent one of the most interesting class of BSM. Among them we find

composite Higgs models, little Higgs, twin Higgs and even supersymmetric models. Universal

theories are those whose main e↵ects can be encoded in higher-dimensional operators involving

only SM bosons. The relevant operators for our analysis, involving gauge bosons, are given in

table 1. The coe�cients of these operators can be traded by a more familiar parametrization:

The Ŝ and T̂ parameters (we follow the notation of []) and triplet gauge couplings (TGC)

parametrized by �gZ1 , �� and ��:

Ŝ = (cW + cB)
m2

W

⇤2
, T̂ = cT

v2

⇤2
, (4)

�g21 = �(cW + cHW )
m2

Z

⇤2
, �� = �(cHW + cHB)

m2
W

⇤2
, �� = c3W

m2
W

⇤2
. (5)

Notice that out of the 6 coe�cients of the operators of Table 1, only 5 linear combinations

can be tested in non-Higgs physics []. The parameters of Eq. (5) were highly constraint by

LEP, together with an accurate knowledge of the W mass from Tevatron. While Ŝ and T̂

were bound at the permille level, the TGGs were only constrained at the percent level [].

Only the operators OW and OHW of table 1 produce a growth of O(E2) in the WLZL

cross-section. The explicit calculation gives

�M00

MSM
00

= 1 +
s

⇤2
(cW + cHW ) , (6)

that can be rewritten as
�M00

MSM
00

= 1� s

m2
Z

�gZ1 . (7)

To work within the validity of the EFT approach (where new physics with a mass scale ⇤

are integrated out) we must require s ⌧ ⇤2. Since we expect cW + cHW . O(1) (see below

the values for particular models), this implies from Eq. (6) that we must be able to measure

deviations from the SM smaller than one in order to derive consistent bounds. Can this be

done at the LHC? This is the aim of the this work.

2.2 Predictions from models

Composite Higgs:

2

^

It size similar to the S-parameter bound at LEP at the per-mille:

• Composite Higgs: In minimal holographic models of composite Higgs, working in the

SILH basis, we have cW ' cB ' 1.0, while cHW,HB ⌧ cW,B and c
2B,2W ' g2

g2⇤
⌧ 1,

where g⇤ is the coupling of the strong sector, while ⇤ is identified with the lightest

vector-resonance mass [6]. This leads to the following predictions:

CWZ ' g2 , CWZ
m2

W

⇤2

' �g2c2✓W �gZ
1

' g2

2
Ŝ . (18)

• Heavy triplet gauge boson: In models with a heavy triplet vector boson W 0a (a =

1, 2, 3), coupled to the Higgs and left-handed fermions in the following way:

L
int

= gfW
0a
µ f̄L�

µ�
a

2
fL + igHW

0a
µ H†�

a

2

$
DµH , (19)

one obtains, after integrating out the heavy W 0 at tree level, in the Warsaw basis,

c(3)L = �gQgH/8, apart from four-fermion interactions. This gives

CWZ ' gQgH
2

. (20)

For universal fermion couplings gf ⌘ gW 0 , we have......

It is clear from the above examples that in models that generate CWZ also generate shifts in

the Z couplings, or the bS and W parameters. These are measured at LEP1 at the 0.1� 1%

level [5], and for this reason bounds on LHC must reach this level to be competitive with

LEP. Furthermore, as already mentioned in the introduction, in these BSM the deviations

with respect to the SM are small even at high-energy

d�BSM � d�SM

d�SM

⇠ C2

WV

g4
E4

⇤4

⌧ 1 , (21)

and, in order for the LHC bounds to apply, we must reach this accuracy. This is one of the

main motivations of our analysis.

3) CWV ⌧ 1: Finally, there are theories where the Wilson coe�cients contributing to WLVL

production are very small. For example, weakly-coupled BSM with no extra spin-one states,

such as supersymmetry, can only contribute to CWV at the loop-level (CWV ⇠ 10�2). For

this type of BSM, we can only put constraint for very low ⇤, invalidating the EFT expansion

E/⇤ for physics at the LHC where E ⇠ TeV. The best bound on this BSM will still come

from lower energy experiments such as LEP. This is illustrated in Fig. 2.

5 Conclusions

A Amplitude decomposition

The particles involved in high-energy diboson production are the quarks and anti-quarks

doublets and singlets and the Higgs doublet, which groups together the Higgs particles and the

12

To test δg1Z ~  3 ×10-3 ☛ We must be able to see a  
10 % deviation of WZ-production at mWZ >300 GeV (cosθ<0.5)



Franceschini,Panico,AP,Riva,
Wulzer, in preparation

LEP1

S@LHC

3ab-1, δsys=5%
100fb-1, δsys=10%
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c B k γ
Figure 5: LEFT: Comparison with LEP1 within models with only cW , cB. RIGHT: comparison

with TGC (point out that these comparisons are qualitatively di↵erent!, the former is within a

specific model, the latter is within the full dim-6 world)

LEP. Furthermore, as already mentioned in the introduction, in these BSM the deviations

with respect to the SM are small even at high-energy

d�BSM � d�SM

d�SM
⇠ C2

WV

g4
E4

⇤4
⌧ 1 , (27)

and, in order for the LHC bounds to apply, we must reach this accuracy. This is one of the

main motivations of our analysis.

3) CWV ⌧ 1: Finally, there are theories where the Wilson coe�cients contributing to WLVL

production are very small. For example, weakly-coupled BSM with no extra spin-one states,

such as supersymmetry, can only contribute to CWV at the loop-level (CWV ⇠ 10�2). For

this type of BSM, we can only put constraint for very low ⇤, invalidating the EFT expansion

E/⇤ for physics at the LHC where E ⇠ TeV. The best bound on this BSM will still come

from lower energy experiments such as LEP. This is illustrated in Fig. 5.

5 Conclusions
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What else can we learn from di-bosons?



What else can we learn from di-bosons?

New Resonances10 TeV

h125 GeV

New possibilities if other SM states
arise from the new strong TeV-dynamics:

SM Vectors?

What to expect?



Composite SM Vectors?

Really?  Their (gauge) coupling g is small  (g/4π≪1)

But remember pions (PGB) have two different type of couplings: 

Large derivative-couplings:    (π∂μπ)2           (preserve π →π+c )

Small gauge couplings:          (π∂μπ) Aμ       (break π →π+c )    

Possibility:  Composite SM vector only with 
                           sizable field-strength interactions Fμν

& corrections to their propagators small (from LEP)



Example:  QED at E<me = Euler-Heisenberg EFT (only dipole int.)

Effective Theory of Strong Dipole Interactions

+ +
+ +

+ ++
-
- -

--
- dipole ≫ 1/Λ 

Aμ

Q=1



Effective Theory of Strong Dipole Interactions

We cannot provide a real model…
but a consistent (stable!) low-energy description

as charge is not renormalized:

case (a factor of) the underlying R-symmetry group is identified with the global subgroup

of the SM gauge group factor SU(2)L and the field-strength couple to an isospin current, as

shown in eq. (78) of appendix C. That represents a first step towards the construction of an

action invariant under the non-linear transformation of N Goldstini, a task that we leave for

future work.

To conclude, we have sketched a situation where an approximate supersymmetry sup-

presses interactions of dimension-6 involving fermions and scalars/gauge bosons, in favor

of interactions of dimension-8 with more derivatives, which we summarize in Appendix C,

eqs. (77-78,82).

4 Applications to Weak-scale E↵ective Lagrangians

Based on the ideas of the previous section we shall here present scenarios where all the SM

degrees of freedom (fermions, gauge fields and the Higgs) can take part in a novel strong

dynamics around the TeV scale. In those models where the gauge bosons are composite with

strong multipolar interactions, the symmetry of the strong sector will generally be

[G]global ⇥ [U(1)N ]local , (25)

which will be deformed by turning on the gauge couplings into

[H
1

]global ⇥ [H
2

]local , (26)

where H
1

⇥ H
2

is a subgroup of G and dim [H
2

] = N . Such a deformation, which slightly

generalizes eq. (15), will allow us to implement the situation where the Higgs is a PNGB.

For a number of reasons we ended up labeling Remedios the scenarios with composite

vectors: the vague esthetic analogy with a character of a famous novel, its rôle as a remedy

to provide a physical interpretation of some LHC searches, and finally for the impossibility

to provide an explicit UV realization.8

4.1 Pure Remedios

The simplest scenario, though perhaps not the most motivated, is one where only the gauge

fields (or part of them) participate in a strong multipolar dynamics. In such a pure Remedios

only the operators associated with the SM field-strengths W a
µ⌫ , Bµ⌫ and GA

µ⌫ can appear

enhanced by powers of the strong coupling g⇤ in the e↵ective Lagrangian. Therefore the largest

e↵ects will be given by operators that are purely built from field-strengths and (covariant)

derivatives. At the dimension-6 level there are just O
3W , O

3G and O
2V (V = W,B,G). The

coe�cients of these operators are expected to be of order

c
3W , c

3G ⇠ g⇤ , c
2W , c

2B, c2G ⇠ 1 . (27)

8
Remedios the Beauty was not a creature of this world - Gabriel Garcia Marquez.
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Beyond-standard-model (BSM) physics effects in pp ! W+W� can be described by a series of
operators with mass dimensions larger than four in addition to the dimension-four operators
in the SM Lagrangian. In the electroweak sector of the SM, in an EFT interpretation [10], the
first higher-dimension operators made solely from electroweak vector fields and the Higgs
doublet have mass dimension six. There are six different dimension-six operators that generate
ATGCs. Three of them are C- and P-conserving while the others are not. In this analysis, we
only consider models with C- and P-conserving operators. In the HISZ basis [56], these three
operators are written as:

cWWW

L2 OWWW =
cWWW

L2 Tr[WµnWnrW µ
r ],

cW

L2OW =
cW

L2 (DµF)†Wµn(DnF),
cB

L2OB =
cB

L2 (DµF)†Bµn(DnF).

(3)

The parameter L is the mass scale that characterizes the coefficients of the higher-dimension
operators, which can be regarded as the scale of new physics. The three operators in Eq. (3)
generate both ATGC and Higgs boson anomalous couplings at tree level and modify the pp !
W+W� cross section. In the absence of momentum-dependent form factors, the traditional
LEP parametrization of ATGCs can be related to the values of the coupling constants of the
dimension-six electroweak operators [10].

The dataset selected for the W+W� cross section measurement is used to bound cWWW/L2,
cW/L2, and cB/L2. For this measurement, we require the events to have zero reconstructed
and identified jets with pT > 30 GeV and |h| < 4.7. We use the m`` distribution because it is
robust against mismodeling of the transverse boost of the W+W� system and is sensitive to the
value of the coupling constants associated with the dimension-six operators. A binned Poisson
log-likelihood comparing the data and simulated m`` distributions is computed. The template
histograms representing various values of the ATGCs are prepared using W+W� simulated
events generated with MADGRAPH using a Lagrangian that contains the SM interaction terms
and the three operators above. Thus, the simulation includes the pure SM contribution, the
ATGC contribution, the Higgs boson anomalous coupling contribution, and the interference
between the SM and ATGC contributions. The hard-scattering simulation includes up to one
hard parton in the final state [57]. The detector response to the events is obtained using the
detailed CMS detector simulation. The various background yields described in Section 5 are
added to the m`` distribution from the simulated signal events. As an example of the templates,
Fig. 4 shows the m`` distribution for one set of values of cWWW/L2, cW/L2, and cB/L2.

Templates of the m`` distribution are prepared for different hypothetical values of the coupling
constants cWWW/L2, cW/L2, and cB/L2. We consider both the cases in which only one of the
coupling constants has a nonzero value, and the cases in which two of them are varied simul-
taneously. The correlations between the measured coupling constants are not strong, so we do
not consider the case in which the three coupling constants are allowed to vary simultaneously.
Thus, the results presented here assume that the symmetries of the BSM theory would only al-
low either one or two of the dimension-six electroweak operators to contribute appreciably.

The expected number of events in each bin of the template histograms is interpolated using
polynomial functions as a function of the coupling constants to create a continuous parametriza-
tion of the model. A profile likelihood fit to the data for each coupling-constant hypothesis is
performed using the method described in Section 7.
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Figure 4: The m`` distribution with all SM backgrounds and cW/L2 = 20 TeV�2, cWWW/L2 =
20 TeV�2, and cB/L2 = 55 TeV�2. The events are selected requiring no reconstructed jets with
pT > 30 GeV and |h| < 4.7. The last bin includes all events with m`` > 575 GeV. The hatched
area around the SM distribution is the total systematic uncertainty in each bin. The signal
component is simulated with MADGRAPH and contains the qq ! W+W�, the nonresonant
gg ! W+W�, and the gg ! H ! W+W� components.

Table 8: Measured cWWW/L2, cW/L2, and cB/L2 coupling constants and its corresponding
95% CL intervals. Results are compared to the world average values, as explained in the text.

Coupling constant This result Its 95% CL interval World average
(TeV�2) (TeV�2) (TeV�2)

cWWW/L2 0.1+3.2
�3.2 [�5.7, 5.9] �5.5 ± 4.8 (from lg)

cW/L2 �3.6+5.0
�4.5 [�11.4, 5.4] �3.9+3.9

�4.8 (from gZ
1 )

cB/L2 �3.2+15.0
�14.5 [�29.2, 23.9] �1.7+13.6

�13.9 (from kg and gZ
1 )

arXiv:1507.03268

Better than LEP!

Remember: Only valid for this type of 
strongly-coupled models!

effect that grows with the energy

LHC8:  Λ ≳ 8.5 TeV  (for     ~ 4π)g⇤



For concreteness:  H→H+c    preserving SO(4) custodial

Remedios + Composite PGB Higgs



For concreteness:  H→H+c    preserving SO(4) custodial

Effects:
●

DμHFμν
●

g⇤g⇤

OH = 1

2

(@µ|H|2)2

OT = 1

2

⇣
H†

$
DµH

⌘
2

O
6

= |H|6

OW = i
2

⇣
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DµH
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OB = i
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H†

$
DµH
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@⌫Bµ⌫

OHW = i(DµH)†�a(D⌫H)W a
µ⌫

OHB = i(DµH)†(D⌫H)Bµ⌫

OBB = |H|2Bµ⌫Bµ⌫

OGG = |H|2GA
µ⌫G

Aµ⌫
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3!

✏abcW a ⌫
µ W b

⌫⇢W
c ⇢µ

O
3G = 1

3!

fABCGA ⌫
µ GB

⌫⇢G
C ⇢µ

O 
L,R = (iH†

$
DµH)( ̄L,R�µ L,R)

O(3) 
L = (iH†�a

$
DµH)( ̄L�a�µ L)

O
4 =  ̄�µ  ̄�µ 

Table 1: Dimension-6 operators used in our analysis. Notice that our normalization di↵ers

from previous literature.

|H|2 |H|4 OH O
6

OV O
2V O

3V OHV OV V Oy 

ALH m2

⇤ g2⇤ g2⇤ g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV g2V y g2⇤

GSILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV

y2t
16⇡2 g2V y g2⇤

SILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
16⇡2 gV

g2⇤
16⇡2 gV

y2t
16⇡2 g2V y g2⇤

Table 2: Estimated coe�cients (ci) of di↵erent operators appearing in the e↵ective Lagrangian

for a strongly interacting Higgs, under di↵erent hypotheses: an accidentally small electroweak

scale and accidentally light Higgs (ALH), a general SILH (GSILH) scenario, and the proper

SILH of [5] where the additional assumption of MC is considered (see Appendix A). The

subscript V can denote W,B,G according to the basis defined in table 1. For the ALH scenario

the entries in the first two columns emphasize the need for tuning, w.r.t. the NDA estimate

(see Appendix B).

Appendix B. The second scenario we consider is that of a general PNGB strongly-interacting

light Higgs (GSILH), defined by the most general L satisfying the SO(5) selection rules. The

third scenario is the slightly more specific case of the SILH considered in [5], where L
0

is not

completely generic because of restricted properties of the dynamics at the scalem⇤. This third

class describes, for instance, Little Higgs models and Holographic composite Higgs models.

A few explanations of the results of table 2 are in order. First of all, we should give a

motivation for our choice of operators. Our choice singles out OW,B and O
2W,2B as the only

operators involving vectors that can be generated at tree level by the exchange of massive

vectors in a renormalizable theory. Now, as it turns out, the Little Higgs models and holo-

graphic Higgs models, in their simplest incarnations, at the scale m⇤ are described to a rather

good approximation by renormalizable Lagrangians. That property is essentially a corollary

7
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Figure 5: Two-dimensional observed (thick lines) and expected (thin lines) 68% and 95% CL
contours. The contours are obtained from profile log-likelihood comparisons to data assuming
two nonzero coupling constants: cWWW/L2 ⇥ cW/L2, cWWW/L2 ⇥ cB/L2, and cW/L2 ⇥ cB/L2.
The cross markers indicate the best-fit values, and the diamond markers indicate the SM ones.
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O(3) 
L = (iH†�a

$
DµH)( ̄L�a�µ L)

O
4 =  ̄�µ  ̄�µ 

Table 1: Dimension-6 operators used in our analysis. Notice that our normalization di↵ers

from previous literature.

|H|2 |H|4 OH O
6

OV O
2V O

3V OHV OV V Oy 

ALH m2

⇤ g2⇤ g2⇤ g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV g2V y g2⇤

GSILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV

y2t
16⇡2 g2V y g2⇤

SILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
16⇡2 gV

g2⇤
16⇡2 gV

y2t
16⇡2 g2V y g2⇤

Table 2: Estimated coe�cients (ci) of di↵erent operators appearing in the e↵ective Lagrangian

for a strongly interacting Higgs, under di↵erent hypotheses: an accidentally small electroweak

scale and accidentally light Higgs (ALH), a general SILH (GSILH) scenario, and the proper

SILH of [5] where the additional assumption of MC is considered (see Appendix A). The

subscript V can denote W,B,G according to the basis defined in table 1. For the ALH scenario

the entries in the first two columns emphasize the need for tuning, w.r.t. the NDA estimate

(see Appendix B).

Appendix B. The second scenario we consider is that of a general PNGB strongly-interacting

light Higgs (GSILH), defined by the most general L satisfying the SO(5) selection rules. The

third scenario is the slightly more specific case of the SILH considered in [5], where L
0

is not

completely generic because of restricted properties of the dynamics at the scalem⇤. This third

class describes, for instance, Little Higgs models and Holographic composite Higgs models.

A few explanations of the results of table 2 are in order. First of all, we should give a

motivation for our choice of operators. Our choice singles out OW,B and O
2W,2B as the only

operators involving vectors that can be generated at tree level by the exchange of massive

vectors in a renormalizable theory. Now, as it turns out, the Little Higgs models and holo-

graphic Higgs models, in their simplest incarnations, at the scale m⇤ are described to a rather

good approximation by renormalizable Lagrangians. That property is essentially a corollary

7

g⇤
⇤2

mainly a↵ects TGC and the hZ� vertex:

�gZ
1

=
��

cos2 ✓W
=

�ghZ�

sin ✓W cos ✓W
= �m2

Z

m2

⇤

cHW

g
⇠ m2

Z

m2

⇤

g⇤
g

, (52)

�� =
m2

W

m2

⇤

c
3W

g
⇠ m2

W

m2

⇤

g⇤
g
, (53)

where �gZ
1

, ��,�� correspond to anomalous TGC, normalized according to Ref. [31],13 while

�ghZ� describes the anomalous HZ� vertex according to �LhZ� = �gh�Z(h/v)Fµ⌫Zµ⌫ . Notice

the interesting correlation between �gZ
1

, �� and �ghZ�, which could single out these scenarios

if deviations from the SM predictions were to appear in the future. Taking into account the

present constraint from h ! �� and EWPT, the allowed size of these other e↵ects could

still be as large as a few per-cent which is within the reach of the ongoing LHC run, or of

future electron-positron colliders. It is important to point out these new contributions to

hZ� are potentially even larger than the SM one, as that arises at one-loop. Perhaps more

importantly, the relative size of the new physics e↵ects in hZ� and in h�� is

�gh�Z
�gh��

⇠ g⇤
g
. (54)

Thus, deviations larger than O(1) in BR(h ! Z�) are possible at the moment.

Like in all models with composite Higgs, it is also worth considering the situation where

one, or both, of the chiralities of the top quark is part of the strong dynamics. Consider first

the case where tR is composite. One class of important e↵ects is again given by @µ/m⇤ dressing

of SM operators. The leading e↵ect at the dimension-6 level is given by t̄R 6D3tR/m2

⇤, which

upon use of the equations of motion leads to cyt ⇠ y3t and to ctL ⇠ c(3)tL ⇠ y2t corresponding

to a specific linear combination of Ot
L and O(3)t

L . The first e↵ect corresponds to an (mt/mh)2

enhancement w.r.t. eq. (46). The second one gives a relative correction to the ZtLt̄L vertex

of order m2

t/m
2

⇤, leaving the ZbLb̄L vertex una↵ected. The other class of contributions arise

from loops, and the leading one is shown in Fig. 1(c). This gives rise, among other sublead-

ing e↵ects, to ctR ⇠ (g⇤/4⇡)2y2t , implying a relative correction to the ZtRt̄R vertex of order

(g⇤/4⇡)2(mt/m⇤)2. Analogous e↵ects are generated in the case of a composite tL, (Fig. 1(c),

with tR ! tL). Now the novelty is that also the ZbLb̄L vertex is modified by a relative amount

(g⇤/4⇡)2(mt/m⇤)2, implying the rather strong constraint m⇤ ⇠> 5 (g⇤/4⇡) TeV.

4.3 Composite Fermions

In this section we shall discuss the implications of fermion compositeness, in its di↵erent incar-

nations of partial compositeness, described in Section 2.2, and approximate supersymmetry,

described in Section 3.2.
13We recall that, at the dimension-6 level, the other parameters are fixed: �Z = �� and �Z = �gZ1 �

tan2 ✓W �� .
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Figure 5: Two-dimensional observed (thick lines) and expected (thin lines) 68% and 95% CL
contours. The contours are obtained from profile log-likelihood comparisons to data assuming
two nonzero coupling constants: cWWW/L2 ⇥ cW/L2, cWWW/L2 ⇥ cB/L2, and cW/L2 ⇥ cB/L2.
The cross markers indicate the best-fit values, and the diamond markers indicate the SM ones.
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Effects:
●
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●
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What else can we learn from di-bosons?
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We limit ourselves to processes that involve at least a pair of bosons and use field redefinitions

(equivalent to equations of motion) to rewrite terms with derivatives (e.g. DµBµ⌫ , DµW aµ⌫ ,

2H, 6@ ) as terms with fields (see also [50]). Operators of the form |H|2O
6

, with O
6

a dim-6

operator, can be read directly from, e.g., Ref. [51, 52] and generalization to operators with

gluons is straightforward, so we omit them here.

(Xµ⌫)4 In models with the Remedios structure, we find

SU(2)L :
8

O
4W = W a

µ⌫W
aµ⌫W b

⇢�W
b ⇢�

8

O0
4W = W a

µ⌫W
b µ⌫W a

⇢�W
b ⇢� (72)

8

O
4

fW = W a
µ⌫W

a ⌫⇢W b
⇢�W

b�µ
8

O0
4

fW = W a
µ⌫W

b ⌫⇢W a
⇢�W

b�µ (73)

U(1)Y :
8

O
4B = Bµ⌫B

µ⌫B⇢�B
⇢�

8

O
4

eB = Bµ⌫B
⌫⇢B⇢�B

�µ (74)

SU(2)L ⇥ U(1)Y :
8

O
2WB = W a

µ⌫W
aµ⌫B⇢�B

⇢�
8

O0
2WB = W a

µ⌫B
µ⌫W a

⇢�B
⇢� (75)

8

O
2

fW eB = W a
µ⌫W

a ⌫⇢B⇢�B
�µ

8

O0
2

fW eB = W a
µ⌫B

⌫⇢W a
⇢�B

�µ . (76)

Notice that Bµ⌫
eBµ⌫B⇢�

eB⇢� (and similar for W ) can be eliminated in favor of the above using

the properties of the Levi-Civita tensor.

D 2(Xµ⌫)2 Strongly interacting fermions and vectors generate

8

OTWW = T µ⌫W a
µ⇢W

a ⇢
⌫ 8

OTBB = T µ⌫Bµ⇢B
⇢
⌫ (77)

8

OTWB = T aµ⌫W a
µ⇢B

⇢
⌫ (78)

where T µ⌫ = i
4

 ̄(�µ
$
D⌫+�⌫

$
Dµ) and T a, µ⌫ = i

4

 ̄(�µ
$
D⌫+�⌫

$
Dµ)�a for SU(2)L doublets. On

the other hand
8

OJWW = ✏abcJa⌫
 W b

⇢µ

$
D⌫

fW c ⇢µ,
8

OJWB = Ja⌫
 W a

⇢µ

$
D⌫

eB⇢µ are odd under both C

and P , and CP even (Ja⌫
 =  ̄�⌫�a , J⌫ =  ̄�⌫ denote universal SU(2)L ⇥ U(1)Y currents,

the extension to other cases being straightforward). Operators of the form J⌫ B
µ⇢Dµ

eB⇢⌫ (and

similarly for W a
µ⌫), or operators involving  ̄(�

µ
$
D⌫ � �⌫

$
Dµ) vanish due to Bianchi identities.

The operators
8

OJWW ,
8

OJWB and
8

OTWB cannot arise in the model of Section 4.2.1, as they

are not singlets under G in eq. (33) - the former are also suppressed for  pseudo-Goldstini.

D4H4 In models where the Higgs is composite,

8

O{D}H = (D{µH
†D⌫}H)2

8

ODH = (DµH
†DµH)2 (79)

mediate interaction between four (longitudinal) vectors, that might be relevant in the model

ISO(4)/SO(4) of Section 4.2.2, where the leading contribution from OH is suppressed. Oper-

ators that involve the µ $ ⌫ (anti)symmetric part of DµH†D⌫H (DµH†�aD⌫H), transform as

a (1L,3R) and (3L,3R) of SU(2)L⇥SU(2)R and break custodial symmetry; while the custodial

preserving (D
[µH†�aD⌫]H)2 can be rewritten as eq. (79) using the properties of Pauli matrices.

For completeness, we list
�
H†DµD⌫H +DµD⌫H†H

�
2

and
�
H†�aDµD⌫H �DµD⌫H†�aH

�
2

which however vanish in ISO models.
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work in progress!
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Beyond-standard-model (BSM) physics effects in pp ! W+W� can be described by a series of
operators with mass dimensions larger than four in addition to the dimension-four operators
in the SM Lagrangian. In the electroweak sector of the SM, in an EFT interpretation [10], the
first higher-dimension operators made solely from electroweak vector fields and the Higgs
doublet have mass dimension six. There are six different dimension-six operators that generate
ATGCs. Three of them are C- and P-conserving while the others are not. In this analysis, we
only consider models with C- and P-conserving operators. In the HISZ basis [56], these three
operators are written as:

cWWW

L2 OWWW =
cWWW

L2 Tr[WµnWnrW µ
r ],

cW

L2OW =
cW

L2 (DµF)†Wµn(DnF),
cB

L2OB =
cB

L2 (DµF)†Bµn(DnF).

(3)

The parameter L is the mass scale that characterizes the coefficients of the higher-dimension
operators, which can be regarded as the scale of new physics. The three operators in Eq. (3)
generate both ATGC and Higgs boson anomalous couplings at tree level and modify the pp !
W+W� cross section. In the absence of momentum-dependent form factors, the traditional
LEP parametrization of ATGCs can be related to the values of the coupling constants of the
dimension-six electroweak operators [10].

The dataset selected for the W+W� cross section measurement is used to bound cWWW/L2,
cW/L2, and cB/L2. For this measurement, we require the events to have zero reconstructed
and identified jets with pT > 30 GeV and |h| < 4.7. We use the m`` distribution because it is
robust against mismodeling of the transverse boost of the W+W� system and is sensitive to the
value of the coupling constants associated with the dimension-six operators. A binned Poisson
log-likelihood comparing the data and simulated m`` distributions is computed. The template
histograms representing various values of the ATGCs are prepared using W+W� simulated
events generated with MADGRAPH using a Lagrangian that contains the SM interaction terms
and the three operators above. Thus, the simulation includes the pure SM contribution, the
ATGC contribution, the Higgs boson anomalous coupling contribution, and the interference
between the SM and ATGC contributions. The hard-scattering simulation includes up to one
hard parton in the final state [57]. The detector response to the events is obtained using the
detailed CMS detector simulation. The various background yields described in Section 5 are
added to the m`` distribution from the simulated signal events. As an example of the templates,
Fig. 4 shows the m`` distribution for one set of values of cWWW/L2, cW/L2, and cB/L2.

Templates of the m`` distribution are prepared for different hypothetical values of the coupling
constants cWWW/L2, cW/L2, and cB/L2. We consider both the cases in which only one of the
coupling constants has a nonzero value, and the cases in which two of them are varied simul-
taneously. The correlations between the measured coupling constants are not strong, so we do
not consider the case in which the three coupling constants are allowed to vary simultaneously.
Thus, the results presented here assume that the symmetries of the BSM theory would only al-
low either one or two of the dimension-six electroweak operators to contribute appreciably.

The expected number of events in each bin of the template histograms is interpolated using
polynomial functions as a function of the coupling constants to create a continuous parametriza-
tion of the model. A profile likelihood fit to the data for each coupling-constant hypothesis is
performed using the method described in Section 7.

A model-independent analysis must include dim-8 operators

Implications in 
qq→VTVT:



Conclusions

Don’t be afraid to pursue it, even without full
knowledge of the theory

● These BSMs can also be probed (possibly, the only ones!)
    in di-boson production at the LHC at the high-energy regime! 

● New Strong dynamics at the TeV is still one of the 
       best options for TeV-BSM: 

Nature does not care about our limitations!

● In particular, pp→ WL ZL the most promising 
  (reduced  WT ZT in central region, but Jet veto needed)

      possibility to achieve EWSB SM-tests below 1%

● Other more exotic possibilities:  Gauge boson composite at TeV:  
                                                    Also pp→ WTWT important  
                                                      (but dim-8 operators could be 
                                                      as important as dim-6)


