New Physics Results (boosted signatures) from the LHC

Josh Xi August 29, 2017

University of Michigan

- Many searches at LHC look for new physics with diboson in the final sates.
- Data collected at LHC so far have been found to be in good agreement with the predictions from the Standard Model
- However, many questions remain unanswered:
 - Baryogenesis: imbalance of matter and anti-matter
 - The Hierarchy problem
 - Dark matter and gravity
- Many theories attempting to address these issues predict new physics with diboson in the final states
- Finding such new physics via diboson final states will be expedited in Run
 2 of LHC with an increased center-of-mass energy.

Theoretical models

1. Heavy Vector Triplets (HVT)

- A simplified phenomenological Lagrangian:
 - Model A: coupling to fermions dominating; weakly coupled vector resonances from extension of the gauge group, $g_v \sim 1$, $c_H \sim -g^2/g_v^2$
 - Model B: coupling to fermions suppressed; produced in a strong scenario (composite Higgs models), 1 < $g_{\rm V}$ < 4 π , $c_{\rm H}$ ~ $c_{\rm F}$ ~ 1
- *WW, WZ, Vh* final states
- 2. Warped Extra Dimension
- Randall-Sundrum (RS) model
- Existence of spin-2 Kaluza-Klein (KK) gravitons at **TeV** scale
 - Cross section and intrinsic width scale as the square of $k/\bar{M}_{\rm pl}$
- *WW, ZZ, hh* final states
- 3. MSSM/2HDM etc.

KK gravitons, heavy higgs, ...

Identification of hadronic decays of boosted bosons

Boosted Tagging: ATLAS

- Large-R jet: anti- $k_T R = 1.0$ trimmed jets
- Jet grooming technique: trimming
 - To remove the effects of pile-up and underlying event
 - Trimming parameters: $R_{sub} = 0.2$ and $f_{cut} = 5\%$

JHEP09 (2013) 076

- Jet mass combined mass
 - Track-assisted mass: $m^{\text{TA}} = m^{\text{track}} \times \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}}$
 - Spatial granularity of tracks can improve the mass resolution at high $p_{
 m T}$
 - Combined mass based on both calorimeter and track:

$$m^{\rm comb} = \frac{\sigma_{\rm calo}^{-2}m^{\rm calo} + \sigma_{\rm TA}^{-2}m^{\rm TA}}{\sigma_{\rm calo}^{-2} + \sigma_{\rm TA}^{-2}}$$

- where σ_{calo} and σ_{TA} are the calorimeter and track-assisted mass resolutions

Boosted Tagging: ATLAS ATLAS ATLAS-CONF-2016-039 ATLAS-CONF-2017-064

- W/Z tagger: 2-var optimized tagger which provides 50% and 80% signal efficiency working points. The two variables are:
 - Jet substructure $D_2^{(\beta=1)}$ (cut is p_T dependent) **"two-prong"**
 - Large-R jet mass window (cut is p_T dependent)
- Higgs-jet tagger:
 - *b*-tagging of ghost-associated track jet (R=0.2)
 - MV2c10 algorithm for *b*-jet ID
 - A fixed large-*R* jet mass window cut

Boosted Tagging: CMS

EXO-17-001 B2G-17-002

- PUPPI AK8 jets Pileup suppression:
 - Each PF particle is assigned a weight using the pileup per particle identification (PUPPI), which describes the likelihood that the particle originates from a pileup interaction
 - Four momenta of particles are rescaled based on the weights
 - Particles are subsequently clustered into AK8 jets (anti- k_{T} , R = 0.8)
- Jet mass soft-drop algorithm:
 - Applied to PUPPI AK8 jets
 - Recursively removes soft wide-angle radiation from a jet
 - Infrared and collinear safe

Boosted Tagging: CMS

<u>B2G-17-002</u>

- Substructure variable au_{21} :
 - τ_N (*N*-subjettiness) describes the degree to which a jet is consistent with having $\leq N$ sub-jets;
 - $\tau_{21} = \tau_2 / \tau_1$ separating bosons jets from q/g jets; high- and low-purity regions based on the value of τ_{21}
- In addition to τ_{21} , double-b tagger for boosted Higgs candidates:
 - MVA to discriminate between $H \rightarrow bb$ and background multi-jet production
 - "Loose" requirement: > 0.3; "tight" requirement: > 0.9

Search for resonances decaying into *VV* (*V=W/Z*)

- Dijet final state: *WW*, *WZ*, *ZZ*
- SM multi-jet background dominates

- Background estimation using functional shape:
 - Di-jet function to model the monotonously falling spectrum
- ATLAS: 50% efficiency *W/Z* tagger; *WW+WZ* or *WW+ZZ* for interpretation
 - Boosted W and Z mass windows partially overlap
- CMS: High-purity + low-purity signal regions. *WW, WZ* and *ZZ* interpreted separately.

X→VV→qqqq: ATLAS Results

<u>EXOT-2016-19</u>

 $W \rightarrow qq \rightarrow J$ and $Z \rightarrow qq \rightarrow J$ mass windows overlap; 50% efficiency WP

Background: $\frac{dn}{dx} = p_1 \cdot (1 - x)^{p_2 - \xi p_3} \cdot x^{-p_3}, x = m_{JJ}/\sqrt{s}$

$X \rightarrow VV \rightarrow qqqqq$: CMS Results

<u>B2G-17-001</u>

X→*VV*→*qqqq*: ATLAS and CMS Results

EXOT-2016-19 B2G-17-001

- Semi-leptonic channel: $Z \rightarrow \ell^{\pm} \ell^{\mp} / vv$; $W/Z \rightarrow qq$
- Both high-purity and low-purity regions are present to enhance the sensitivity
- ATLAS
 - High purity: 50% W/Z tagger WP; low purity: 80% W/Z tagger WP
 - Results of $\ell^{\pm}\ell^{\mp}qq$ and vvqq are combined; merged analysis is prioritized, followed by resolved analysis
- CMS
 - High purity: τ_{21} < 0.35; low purity: 0.35 < τ_{21} < 0.75
 - Only *vvqq* results are public with the complete 2015+2016 dataset

Latest CMS *llqq* results: 12.9 fb⁻¹

$X \rightarrow ZV \rightarrow \ell^{\pm} \ell^{\mp} qq l v v qq$: ATLAS Results

- *llqq* analysis:
 - $V \rightarrow qq \rightarrow J$: merged analysis first
 - V→qq→jj: resolved analysis next
 (untagged and b-tagged categories for Z→qq)
- Dominant backgrounds for *llqq*. Z
 +jets, *tī* (*b*-tagged category only)
- Dominant backgrounds for *vvqq*: Z
 +jets, W+jets, tt
- Background templates taken from MC; normalized to data in control regions
- Binned maximum-likelihood fit

To appear soon

EXOT-2016-29

$X \rightarrow ZV \rightarrow \ell^{\pm} \ell^{\mp} qq l v v qq$: ATLAS Results

EXOT-2016-29

- Large-*R* jet mass window: 65 105 GeV
- Background estimation using simulation-assisted "alpha-ratio method"
 - Exploit the correlation between soft-drop jet mass and resonance mass.
 - Calculate ratio of simulation to data and extrapolate to signal region
 - Normalization obtained from m_J, shape from transverse mass
- Unbinned maximum-likelihood fit

B2G-17-005

- Large-R jet mass window: 65 105 GeV
- Background estimation using simulation-assisted "alpha-ratio method"
 - Exploit the correlation between soft-drop jet mass and resonance mass.
 - Calculate ratio of simulation to data and extrapolate to signal region
 - Normalization obtained from m_J, shape from transverse mass
- Unbinned maximum-likelihood fit

B2G-17-005

$X \rightarrow ZV \rightarrow \ell^{\pm} \ell^{\mp} qq l v v qq$: Results

2 TeV [dd] (*MZ* $[qd] (2k_{\rm K} \rightarrow 2Z) [pd] = 10^{-1} 10^{-1} 10^{-1} 10^{-2}$ Asymptotic limits below 2 TeV ATLAS Preliminary Observed 95% CL Observed 95% CL ATLAS Preliminary 10² 10² Expected 95% CL Expected 95% CL \sqrt{s} = 13 TeV, 36.1 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^$ pseudo-experiments above *llqq* Expected 95% CL *llqq* Expected 95% CL \uparrow 10 10 vvqq Expected 95% CL vvqq Expected 95% CL W' limit G_{KK} limit $imes \mathcal{B}(\mathcal{W}'$ Expected $\pm 1\sigma$ Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Expected $\pm 2\sigma$ HVT Model A, $g_V = 1$ Bulk RS, $k/\overline{M}_{Pl} = 1$ <u>کُ</u> 10-HVT Model B, $q_V = 3$ 6010 。 6 10⁻³¹ 10⁻³ 10 10^{-4} 2 3 2 3 4 $m(G_{\rm KK})$ [TeV] *m*(*W*′) [TeV] 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) $W' \rightarrow WZ \rightarrow qqvv$ $G \rightarrow ZZ \rightarrow qqvv$ → VZ) (fb) $\sigma(G) \times B(G \rightarrow VZ)$ (fb) CMS CMS 95% CL limits Preliminary Preliminary Observed Observed Expected ----- Expected 10 10^{2} $\sigma(W') \times B(W')$ ± 1 std. deviation ± 1 std. deviation **Asymptotic limits** G_{KK} Limit ± 2 std. deviations ± 2 std. deviations spin-2 signal spin-1 signal G (Bulk), k=1.0 W' (HVT model B) spin-2 signal spin-1 signal W' (HVT model A) G (Bulk), k=0.5 10 10 W limit 10⁻¹ 10⁻¹ 4000 2000 2500 2500 1500 3000 3500 4000 1500 2000 3000 3500 m_{w'} (GeV) m_G (GeV)

vvqq dominates at high mass

limits based on narrow-width approximation signal

EXOT-2016-29 <u>B2G-17-005</u>

- Semi-leptonic channel: $W \rightarrow \ell^{\pm} v$; $W/Z \rightarrow qq$
- Merged analysis is prioritized, followed by resolved analysis
- Both high-purity (50% WP) and low-purity (80% WP) regions are present to enhance the sensitivity CR: mass sidebandsof $V \rightarrow qq$
- Dominant background processes: *W*+jets, *[tī*]
 - Templates from MC simulations
 - Normalizations obtained from *W*+jets and *tī* control regions
 correspondingly.
 e.g. normalized to data in WCR

Latest CMS results: 12.9 fb⁻¹

CR: presence of *b*-jets in

addition to $V \rightarrow qq$

$X \rightarrow WV \rightarrow \ell^{\pm} v q q$: ATLAS Results

ATLAS-CONF-2017-051

ATLAS-CONF-2017-051

$X \rightarrow WV \rightarrow \ell^{\pm} v q q$

Search for resonances decaying into VH (V=W/Z)

- Vector boson and Higgs decays selected as large-R jets
- Dominant background: multijet
- ATLAS
 - 1-tag and 2-tag signal regions based on the number of *b*-tagged track jets associated to the *H* candidate
 - 2-tag SR prevails < 2.5 TeV and 1-tag SR becomes more sensitive
 > 2.5 TeV when the two track jets merge into a single one
- CMS
 - High-purity and low-purity signal regions, in which both loose and tight b-tagging are done on the H candidate using the double-b tagger

DT-2016-12

- Multijet (~90%) modeled directly from data, other minor backgrounds (~10% *tī*, ≤1% *V*+jets) from simulation
- 0-tag sample (99% multijet) is used to model the kinematics of the multijet background in the 1-tag and 2-tag SRs:
 - Kinematic corrections to multijet template are applied by reweighting events.the are sample
 - Normalization uncertainties assessed for the validation regions
 - Shape uncertainties assigned by fitting a variety of empirical functions and by varying 45 he fit range
- Binned maximum-likelihood fit

Higgs boson candidate mass [GeV]

Higgs boson candidate mass [GeV]

orthogonal regions

$X \rightarrow VH \rightarrow qqbb$: ATLAS Results

EXOT-2016-12

- Background largely dominated by multijet production (≥95%)
- Events are divided into eight exclusive categories:
 - *b*-tagging discriminator: tight and loose categories
 - τ_{21} : high-purity (HP) and low-purity (LP) categories
 - *V* jet mass: *W* mass and *Z* mass categories
- The background is estimated directly from data by a smooth and monotonically decreasing parametric function
- F-test employed to identify the "best" function:

$$\cdot \quad \frac{p_0}{x^{p_1}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)+p_4\log^2(x)}}$$

B2G-17-002

<u>B2G-17-002</u>

$X \rightarrow VH \rightarrow qqbb$: CMS Results

<u>B2G-17-002</u>

$X \rightarrow VH \rightarrow qqbb$: CMS Results

X→*VH*→*qqbb*: ATLAS and CMS Results

EXOT-2016-12 B2G-17-002

Semi-Leptonic VH: ATLAS

ATLAS-CONF-2017-055

Latest CMS results: 2015 data

Resolved analysis is prioritized!

- Final states explored: *vvbb, ℓvbb* and *ℓℓbb*
- 3 channels based on V decays: 0-/2-lepton (A, Z'), 1-lepton (Z')
- b-tag categories based on b-tagged track jets: 1-/2-tag used for A and V', 3+ tag used for A (sensitive to bbA)

ATLAS-CONF-2017-055

Semi-Leptonic VH: ATLAS Results

Search for resonances decaying into *HH*

Search for new physics with a pair of SM Higgs bosons. Only boosted resonant search updated with 35.9 fb⁻¹.

- In high-mass resonance searches, each
 H→bb is reconstructed as a large-R jet.
- Multi-jet background estimation:
 - *m_X* < 1200 GeV, data-driven "Alphabet" method

m_X > 1200 GeV, Alphabet Assisted Bump Hunt (AABH) with leveled exponential function

 Normalization extracted from sidebands in *b*-tag and M_j Generalized ABCD method: pass-fail ratio measured as a function of M_{j1} in several sidebands

$$f(x) = N \cdot e^{-ax/(1+a \cdot b \cdot x)}$$

Latest ATLAS results: 13.3 fb⁻¹

<u>B2G-16-026</u>

<u>B2G-16-026</u>

HH→bbbb: CMS Results

HH→bbbb: CMS Results

<u>B2G-16-026</u>

- Di-Higgs search in $\tau\tau$ final state to investigate both the resonant and non-resonant production mechanisms.
- 3 channels: $\tau_H \tau_H$, $\tau_H \tau_e$, $\tau_H \tau_{\mu}$, which cover 85% of $\tau \tau$ decays.
- 3 categories: 2 *b*-tags, 1 *b*-tag, *high-mass boosted*.
- Main backgrounds: *tī*, Drell-Yan, QCD (data-driven estimates).
- 2 BDTs to reject $t\bar{t}$ process in $\tau_{\rm H}\tau_{\rm e}$, $\tau_{\rm H}\tau_{\mu}$ channels.
- Signal extraction from:
 - resonant: $m_{\rm HH}^{\rm KinFit}$
 - non-resonant: 'stransverse' mass m_{T2} .

*HH→bb***TT: CMS Results**

<u>HIG-17-002</u>

Resonant results

Summary

ATLAS Diboson Summary

CMS Diboson Summary

- Latest ATLAS and CMS Run II searches for diboson resonances with boosted topologies are presented.
- No significant deviations from Standard Model observed .
- Looking towards the full Run 2 dataset:
 - Refine and improve the methods for the incoming data.
 - Benefit from more advanced boosted tagging techniques.
 - Exploring other ideas open-mindedly.

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

Jets† E_T^{miss} ∫⊥ dt[fb⁻¹] Model Limit l, γ Reference ADD $G_{KK} + g/q$ 0 e, µ 36.1 n = 21 - 4iYes 7.75 TeV ATLAS-CONF-2017-060 dimensions ADD non-resonant yy 2γ 36.7 8.6 TeV n = 3 HLZ NLO M CERN-EP-2017-132 --2 j ADD QBH 37.0 M., 8.9 TeV n = 61703.09217 $\geq 1 \ e, \mu$ n = 6, M_D = 3 TeV, rot BH ADD BH high 5 pT ≥2j M_{th} 8.2 TeV 3.2 1606.02265 ADD BH multijet Mit 9.55 TeV n = 6, M_D = 3 TeV, rot BH ≥ 3 j 3.6 1512.02586 _ Extra RS1 $G_{KK} \rightarrow \gamma\gamma$ 2γ 36.7 G_{KK} mass 4.1 TeV CERN-EP-2017-132 $k/\overline{M}_{Pl} = 0.1$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell v$ 1 J 36.1 1.75 TeV $k/\overline{M}_{Pl} = 1.0$ 1 e, µ Yes G_{KK} mass ATLAS-CONF-2017-051 2UED / RPP Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 1 e, µ ≥ 2 b, ≥ 3 j Yes 13.2 KK mass 1.6 TeV ATLAS-CONF-2016-104 4.5 TeV 2 e. µ 36.1 Z' mass ATLAS-CONF-2017-027 SSM $Z' \rightarrow \ell \ell$ SSM $Z' \rightarrow \tau \tau$ 2τ _ 36.1 Z' mass 2.4 TeV ATLAS-CONF-2017-050 bosons 1.5 TeV Leptophobic $Z' \rightarrow bb$ 2 b 3.2 Z' mass 1603.08791 Leptophobic $Z' \rightarrow tt$ 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 2.0 TeV $\Gamma/m = 3\%$ ATLAS-CONF-2016-014 3.2 Z' mass SSM $W' \rightarrow \ell v$ 1 e. µ 36.1 5.1 TeV 1706.04786 Gauge Yes W' mass HVT $V' \rightarrow WV \rightarrow qqqq$ model B 0 e, µ 36.7 3.5 TeV 2 J CERN-EP-2017-147 V' mass $g_V = 3$ $HVT V' \rightarrow WH/ZH \mod B$ multi-channel 36.1 V' mass 2.93 TeV $g_V = 3$ ATLAS-CONF-2017-055 LRSM $W'_{c} \rightarrow tb$ 1 e,µ 2 b, 0-1 j Yes 20.3 1.92 TeV 1410.4103 V" mase LRSM $W'_{R} \rightarrow tb$ \geq 1 b, 1 J 1.76 TeV 0 e, µ -20.3 1408.0886 2 j 21.8 TeV 7/14 CI gggg 37.0 -_ 1703.09217 0 CI (lgg 36.1 2 e, µ 40.1 TeV 11 ATLAS-CONF-2017-027 CI uutt 4.9 TeV 2(SS)/≥3 e,µ ≥1 b, ≥1 j 20.3 $|C_{RR}| = 1$ 1504.04605 Yes Axial-vector mediator (Dirac DM) 0 e, µ 1 - 4i1.5 TeV g_=0.25, g_=1.0, m(\chi) < 400 GeV ATLAS-CONF-2017-060 Yes 36.1 Inned MQ Vector mediator (Dirac DM) g₀=0.25, g_y=1.0, m(χ) < 480 GeV 0 e, µ, 1 γ ≤ 1 j Yes 36.1 1.2 TeV 1704.03848 mand VV XX EFT (Dirac DM) 1 J, ≤ 1 j Yes Μ. 700 GeV $m(\chi) < 150 \, \text{GeV}$ 0 e.µ 3.2 1608.02372 Scalar LQ 1st gen 2 e ≥ 2 i 3.2 Q mass 1.1 TeV $\beta = 1$ 1605.06035 _ 2 Scalar LQ 2nd gen 2μ ≥2j 3.2 1.05 TeV $\beta = 1$ Q mass 1605.06035 Scalar LQ 3rd gen 1 e, µ ≥1 b, ≥3 j Yes 20.3 640 GeV $\beta = 0$ 1508.04735 VLQ $TT \rightarrow Ht + X$ $0 \text{ or } 1 e, \mu \ge 2 b, \ge 3 j$ 13.2 1.2 TeV $\mathcal{B}(T \rightarrow Ht) = 1$ ATLAS-CONF-2016-104 Yes r mass quarks $VLQ TT \rightarrow Zt + X$ ≥1 b, ≥3 j Yes $\mathcal{B}(T \rightarrow Zt) = 1$ 1 e, µ 36.1 1.16 TeV 1705.10751 l mass $VLQ TT \rightarrow Wb + X$ $1 e, \mu \ge 1 b, \ge 1J/2$ Yes 36.1 T mass 1.35 TeV $\mathcal{B}(T \rightarrow Wb) = 1$ CERN-EP-2017-094 $VLQ BB \rightarrow Hb + X$ 1 e, µ ≥2b,≥3j Yes 20.3 3 mass 700 GeV $\mathcal{B}(B \rightarrow Hb) = 1$ 1505.04306 Heavy $VLQ BB \rightarrow Zb + X$ 2/≥3 e,µ ≥2/≥1 b 20.3 $\mathcal{B}(B \rightarrow Zb) = 1$ 1409.5500 _ 790 Ge\ $VLQ BB \rightarrow Wt + X$ 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 1.25 TeV $\mathcal{B}(B \rightarrow Wt) = 1$ CERN-EP-2017-094 B mass $VLQ QQ \rightarrow WqWq$ 1 e, µ ≥4 j Yes 20.3 Q mas 690 GeV 1509.04261 Excited quark $q^* \rightarrow qg$ 2 j 6.0 TeV _ 37.0 q* mass only u^* and d^* , $\Lambda = m(q^*)$ 1703.09127 Excited quark $q^* \rightarrow qy$ 1 j 5.3 TeV ted 1 y36.7 a* mass only u^* and d^* , $\Lambda = m(q^*)$ CERN-EP-2017-148 Excited quark $b^* \rightarrow bg$ 1 b, 1 j _ 13.3 b* mass 2.3 TeV ATLAS-CONF-2016-060 _ Excited quark $b^* \rightarrow Wt$ 1 or 2 e, µ 1 b, 2-0 j Yes 20.3 1.5 TeV $f_{d} = f_{L} = f_{R} = 1$ 1510.02664 * mass ŵ Excited lepton l* 3 e, µ 20.3 $\Lambda = 3.0 \text{ TeV}$ 1411.2921 _ _ Excited lepton v* 3 e, µ, τ -20.3 1.6 TeV $\Lambda = 1.6 \text{ TeV}$ 1411.2921 LRSM Majorana v 2 e. µ 2 j 20.3 2.0 TeV $m(W_R) = 2.4$ TeV, no mixing 1506.06020 -Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2,3,4 e, µ (SS) 36.1 870 GeV DY production ATLAS-CONF-2017-053 -H^{##} mass Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ DY production, $\mathcal{B}(H_{t}^{**} \rightarrow \ell \tau) = 1$ Other 3 e, µ, τ 20.3 400 GeV 1411.2921 Monotop (non-res prod) 1 e, µ 1 b Yes 20.3 657 GeV $a_{non-res} = 0.2$ 1410.5404 Multi-charged particles 20.3 785 GeV DY production, |q| = 5e 1504.04188 DY production, $|g| = 1g_D$, spin 1/2 Magnetic monopoles 7.0 1.34 TeV 1509.08059 $\sqrt{s} = 8 \text{ TeV}$ √s = 13 TeV 10-1 1 10 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown.

*Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ $\sqrt{s} = 8.13 \text{ TeV}$

CMS Exotica Summary

CMS Exotica Physics Group Summary – ICHEP, 2016

> for **boson-tagging**: want to quantify how **2-subjetty** a jet is

Substructure Variable: $D_2^{(\beta=1)}$

• Energy Correlation Functions (ECF)

• Substructure Variable:

$$D_2^{\beta=1} = E_{\rm CF3} \left(\frac{E_{\rm CF1}}{E_{\rm CF2}}\right)^3$$

- Different working points (w.p.): providing different signal efficiency, e.g. 50%, 80%
- Variable cuts: according to the jet p_T

This Talk