

Results and Prospects in VBS-VV Production in Charged Diboson Channels (including aQGCs): WW, WZ, WY

Md. Naimuddin

University of Delhi

53215---------

August 28 - 30, 2017

MBI - 2017

Karlsruhe, Germany

Md. Naimuddin

AND DESCRIPTION OF THE OWNER OWNE

- Production involving scattering of massive vector bosons
- Produced via Triple Gauge Coupling (TGC), Quartic Gauge Coupling (QGC), or Higgs exchange in s- and t- channel

- Longitudinal scattering of massive gauge bosons (V) is unitarized by interference with Higgs diagrams in SM
- ⇒ The V_L are coupled to the Higgs and they are the ones sensitive to the EWSB.

⇒ The behavior of the LL cross section can give information on the scale at which the symmetry breaks. 29/08/2017
Md. Naimuddin
2

VBS and New Physics

- The non-abelian nature $SU(2)_L xU(1)_Y$ of SM predicts the existence of the trilinear as well as quartic gauge couplings.
- SM allows only charged couplings, i.e. WWZ, WWγ, WWWW, etc :
 pure neutral couplings, i.e. ZZZ type are not allowed at SM tree level since Z/γ has no charge or isospin
- Conceptually, trilinear coupling probe the non-abelian gauge structure, while quartic coupling can be a window on the mechanism of the spontaneous symmetry breaking
- Physics beyond SM can introduce anomalous TGC or QGC which may allow neutral couplings or increase the charged TGC and QGC strength in a model-independent way
 - **BSM** physics can be parameterized in an effective field theory (EFT):

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + \sum_{d>4} \sum_i rac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Results in enhancement at large scattering energies

Anomalous Quartic Gauge Couplings

Scalar operators only involve Higgs doublet

	$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$
	$\mathcal{L}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$
	$\mathcal{L}_{M,0} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\beta}\Phi\right]$
Mixed operators	$\mathcal{L}_{M,1} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$
mix scalar	$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right]$
	$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$
	$\mathcal{L}_{M,4} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$
	$\mathcal{L}_{M,5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$
	$\mathcal{L}_{M,6} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu} \Phi \right]$
	$\mathcal{L}_{M,7} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$

Dimension 8 operators: Lowest dimension operators that modify the quartic boson interactions but do not affect the two or three weak gauge boson vertices.

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$
$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$
$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$
$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Tensor operators only field strength tensors

Ref9/Phys.Rev. D74 (2006) 073005 Md. Naimuddin

August 2017

Cross Sections

CMS Preliminary

W[±]W[±] - Signal selection

Large cross section x branching ratio

Irreducible background low, S/B ~ 1

Further background suppression via b-jet veto (ttbar) and anti-Z cuts in electron channels (DY)
Data-driven estimates for reducible backgrounds

- Lepton fake rates extrapolate from ttbarenriched to signal region
- WZ normalization from trilepton control region

CMS-SMP-17-004

• Data-driven charge mis-ID rates correct the simulation

• Event selection:

• Two and only two leptons ($\ell = \mu$, e) of same charge with pT 1(2) > 25(20) GeV $m_{\ell\ell}$ > 20 GeV

• Two jets with pT > 30 GeV, leading jets taken as tagging jets, m_{jj} > 500 GeV, $|\Delta \eta_{jj}| > 2.5$, max ($z\ell^*$) < 0.75, where $z\ell^* = |\eta_1 - (\eta_{j1} - \eta_{j2})/2|/|\Delta \eta_{jj}|$ is Zeppenfeld variable

• ET miss > 40 GeV

Md. Naimuddin

W[±]W[±] Cross Section

	$\mu^+\mu^+$	e+e+	e ⁺ µ ⁺	$\mu^{-}\mu^{-}$	e ⁻ e ⁻	e ⁻ µ ⁻	Total
Data	40	14	63	26	10	48	201
Signal+Total bkg.	44.1 ± 3.4	19.0 ± 1.9	67.6 ± 3.8	23.9 ± 2.8	11.8 ± 1.8	38.9 ± 3.3	204.8 ± 7.2
Signal	18.3 ± 0.4	6.2 ± 0.2	24.7 ± 0.4	6.5 ± 0.2	2.5 ± 0.1	8.7 ± 0.2	66.9 ± 0.7
Total bkg.	25.7 ± 3.4	12.8 ± 1.9	42.9 ± 3.8	17.4 ± 2.8	9.4 ± 1.8	30.2 ± 3.3	137.9 ± 7.1
Non-prompt	18.4 ± 3.3	5.6 ± 1.7	24.9 ± 3.6	14.2 ± 2.8	5.0 ± 1.6	19.9 ± 3.2	87.9 ± 6.9
WZ	4.4 ± 0.2	3.0 ± 0.2	8.5 ± 0.3	2.2 ± 0.1	1.9 ± 0.2	5.2 ± 0.3	25.1 ± 0.6
QCD WW	1.3 ± 0.1	0.6 ± 0.1	1.7 ± 0.1	0.4 ± 0.1	0.2 ± 0.1	0.6 ± 0.1	4.8 ± 0.2
$W\gamma$	0.2 ± 0.2	1.4 ± 0.5	3.6 ± 0.9	-	0.8 ± 0.4	2.3 ± 0.7	8.3 ± 1.3
Triboson	1.2 ± 0.3	0.8 ± 0.2	2.2 ± 0.4	0.5 ± 0.2	0.3 ± 0.1	0.9 ± 0.3	5.8 ± 0.7
Wrong sign	-	1.5 ± 0.6	1.4 ± 0.4	-	1.1 ± 0.5	1.2 ± 0.4	5.2 ± 1.0

- Only statistical uncertainties listed above
- Signal contributions include only electroweak productions. QCD production is considered as background.
- The interference between the EW and QCD processes is of a few percent in the signal region and considered as systematic uncertainty.
 - An excess of events could signal the presence of anomalous quartic gauge couplings (aQGC) or the existence of a new resonance, such as a doubly charged Higgs boson. 29/08/2017
 Md. Naimuddin
 CMS-SMP-17-004
 7

Major Systematics

- The normalization processes for misidentified leptons 30%.
- The WZ normalization uncertainty is 20-40% (dominated by the small number of events in the trilepton control region)
- Theoretical uncertainties of 12% for the signal normalization and 20% for the triboson background normalization (estimated by varying the renormalization and factorization scales up and down by a factor of two from their nominal value in the event)
- The interference between the EW signal and the QCD background processes taken up to 4.5%.
- > A PDF uncertainty of 5% in the normalization of the signal is included.
- Fiducial cross section measurement:

 σ_{fid} (W[±]W[±]jj) = 3.83 ± 0.66(stat) ± 0.35(syst) fb

CMS-SMP-17-004

• In agreement with the SM expectation 4.25±0.21 fb.

29/08/2017

Md. Naimuddin

Observation of EW Production of W[±]

- Major Backgrounds: Nonprompt leptons, WZ
- Signal strength evaluated by a simultaneous fit of signal region and WZ control region. The fit utilizes signal region with 2-D m_{jj} and m_{ll} distribution and 1-D m_{jj} distribution for control region.
- Observation at 5.5 standard deviations (5.7 expected)
 29/08/2017 Md. Naimuddin CMS-SMP-17-004

Limits on Doubly Charged Higgs boson

- Predicted in Higgs sectors beyond the SM where weak isotriplet scalars are included.
- They can be produced via weak vector-boson fusion (VBF) and decay to pairs of same-sign W

95% CL upper limits on doubly charged Higgs production and decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$.Ratio of Higgs boson vacuum expectation values S_H 29/08/2017Md. NaimuddinCMS-SMP-17-00410

W[±]W[±] - Signal Selection

Signal Region		Selection Criteria
	Lepton	Exactly two tight same-electric-charge leptons with $p_{\rm T} > 25 {\rm ~GeV}$
	Jet	At least two jets with $p_{\rm T} > 30 \text{ GeV}$ and $ \eta < 4.5$
	$m_{\ell\ell}$	$m_{\ell\ell} > 20 \mathrm{GeV}$
Inclusivo	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$
IIICIUSIVE	Z veto	$ m_{\ell\ell} - m_Z > 10 \text{ GeV} \text{ (only for the } e^{\pm}e^{\pm} \text{ channel)}$
	Third-lepton veto	No third veto-lepton
	<i>b</i> -jet veto	No identified <i>b</i> -jets with $p_{\rm T} > 30$ GeV and $ \eta < 2.5$
	m_{jj}	$m_{jj} > 500 \mathrm{GeV}$
VBS	Δy_{jj}	$ \Delta y_{jj} > 2.4$
aQGC	$m_{WW,\mathrm{T}}$	$m_{WW,T} > 400 \text{ GeV}$

Four control regions (CRs) "≤ 1 jet CR", "trilepton CR", "b-tag CR", and "low-m_{ji} CR", are used to validate background predictions.

For all CRs, the contributions from W[±]W[±] jj-EW and W[±]W[±] jj-QCD production are normalized to the SM prediction

29/08/2017

W[±]W[±] - Signal Selection

The invariant mass distribution of the dilepton pair for the $e^{\pm} \mu^{\pm}$ and $\mu^{\pm} \mu^{\pm}$ channels in the \leq 1 jet CR without the Z boson veto requirement 29/08/2017 Md.

The m_{jj} distribution of the two jets with the highest p_T is shown summed over all lepton channels for the trilepton CR

Major systematics for W[±]W[±]

- Inclusive signal region (SR) treats both electroweak and strong production of W[±]W[±]jj as signal.
- VBS signal region consists of events in inclusive SR with separation between two leading-pT jets greater than 2.4 in rapidity (|Δy_{ii}|).

Major Systematics

On Background Yield

	Inclusive SR	VBS SR
	ee/eµ/µµ (%)	ee/eµ/µµ (%)
Jet related uncertainty	11/13/13	13/20/20
W+-Zjj-EW cross section	6/8/11	5/5/8
MC sample size	8/6/8	9/6/8
Non-prompt	4/7/7	4/7/7
Signal Yield	Inclusive SR	VBS SR
Jet-related Unc.	6	5
W+-W=-jj-EW cross section	5	6
WWjj-QCD cross section	3.1	-
Luminosity	2.8	2.8

29/08/2017

Measured cross section for W[±]W[±]

The observed combined significance over the background- only hypothesis is 4.5 σ in the Inclusive SR and 3.6 σ in the VBS SR, while the corresponding expected significances for a SM W[±]W[±] jj signal are 3.1 σ and 2.3 σ , respectively.

29/08/2017

Wγ+2jet – Signal Selection

Final state considered: μ(e) + γ+ ET + 2 jets

Single-lepton (e, μ) trigger	$ M_{\rm e\gamma} - M_Z > 10 {\rm GeV}$ (electron channel)
Lepton, photon ID and isolation	$p_{\rm T}^{j1} > 40 { m GeV}$, $p_{\rm T}^{j2} > 30 { m GeV}$
Second lepton veto	$ \eta^{j1} < 4.7, \eta^{j2} < 4.7$
Muon (electron) $p_{\rm T} > 25$ (30) GeV, $ \eta < 2.1$ (2.4)	$ \Delta \phi_{j1, \vec{p}_{T}^{miss}} > 0.4, \Delta \phi_{j2, \vec{p}_{T}^{miss}} > 0.4 \mathrm{rad}$
Photon $p_{\rm T}^{\gamma} > 22 {\rm GeV}, \eta < 1.44$	b quark jet veto for tag jets
W boson transverse mass $> 30 \text{GeV}$	Dijet invariant mass $m_{ij} > 200 \text{GeV}$
$ \vec{p}_{\rm T}^{\rm miss} > 35 {\rm GeV}$	$\Delta R_{jj}, \Delta R_{j\gamma}, \Delta R_{j\ell}, \Delta R_{\ell\gamma} > 0.5$

CMS-SMP-14-011 29/08/2017

Process	Muon channel	Electron channel
EW-induced W γ +2 jets	5.8 ± 1.8	3.8 ± 1.2
QCD-induced W γ +jets	11.2 ± 3.2	10.3 ± 3.2
W+jets, 1 jet $ ightarrow \gamma$	3.1 ± 0.7	2.2 ± 0.5
MC t $\overline{t}\gamma$	1.2 ± 0.6	0.4 ± 0.2
MC single top quark	0.5 ± 0.5	0.6 ± 0.4
MC WV γ , V \rightarrow two jets	0.3 ± 0.2	0.3 ± 0.2
MC $Z\gamma$ +jets	0.2 ± 0.2	0.3 ± 0.2
Total prediction	22.1 ± 3.8	17.9 ± 3.5
Data	24	20
		15

Wy+2jet Cross Section

The m_{jj} distribution in the muon and electron channels (signal region lies above 700 GeV, indicated by the horizontal arrows).

 $\sigma_{fid} = 10.8 \pm 4.1 \text{ (stat)} \pm 3.4 \text{ (syst)} \pm 0.3 \text{ (lumi) fb}$ (for VBS-like fiducial region) $\checkmark \text{ consistent with the SM prediction of EW- induced signal}_{29/08/2017} Md. Naimuddin CMS-SMP-14-011 16$

Constrains on anomalous Quartic Gauge Couplings

SULV OF

Constrains on aQGC from W[±]W[±]

	Observed limits	Expected limits	Run-I limits
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV^{-4})
f_{S0}/Λ	[-7.7,7.7]	[-7.0, 7.2]	[-38 , 40] [11]
f_{S1}/Λ	[-21.6,21.8]	[-19.9,20.2]	[-118 , 120] [11]
f_{M0}/Λ	[<i>-</i> 6.0 <i>,</i> 5.9]	[-5.6, 5.5]	[-4.6 , 4.6] [29]
f_{M1}/Λ	[-8.7 ,9.1]	[-7.9, 8.5]	[-17 , 17] [29]
f_{M6}/Λ	[-11.9,11.8]	[-11.1,11.0]	[-65 , 63] [11]
f_{M7}/Λ	[-13.3,12.9]	[-12.4,11.8]	[-70 , 66] [11]
f_{T0}/Λ	[-0.62,0.65]	[-0.58,0.61]	[-3.8 , 3.4] [30]
f_{T1}/Λ	[-0.28,0.31]	[-0.26,0.29]	[-1.9 , 2.2] [11]
f_{T2}/Λ	[-0.89,1.02]	[-0.80,0.95]	[-5.2 , 6.4] [11]

✓ Much improved limits compared to Runl 8 TeV.

Numbers in [] are references to published Runl limits. 29/08/2017 Md. Naimuddin CMS-SMP-17-004

An excess of data events with a significance of 1.8σ .

29/08/2017

Constraints on aQGC from W[±]W[±]

Two-dimensional limits on $f_{S,0}/\Lambda^4$ and $f_{S,1}/\Lambda^4$. The limits on α_4 and α_5 are converted to the limits on coefficients of dimension-eight operators, $f_{S,0}/\Lambda^4$ and $f_{S,1}/\Lambda^4$, following the formalism defined in the Appendix of Phys. Rev. D 74 (2006) 073005 using Eqns. (60) and (61) in arXiv:1309.7890. 29/08/2017 Md. Naimuddirhttps://arxiv.org/pdf/1611.02428 WY+2jet – aQGC Constraints

The dash-dotted line depicts a representative signal distribution with anomalous coupling parameter $f_{M,0}/\Lambda^4=f_{M,0}$, $\Lambda^4=44$ TeV and the dashed line shows the same distribution corresponding to

the SM case

Observed limits (${\rm TeV^{-4}})$	Expected limits (${\rm TeV^{-4}})$
$-77 < f_{M,0}/\Lambda^4 < 74$	$-47 < f_{M,0}/\Lambda^4 < 44$
$-125 < f_{M,1}/\Lambda^4 < 129$	$-72 < f_{M,1}/\Lambda^4 < 79$
$-26 < f_{M,2}/\Lambda^4 < 26$	$-16 < f_{M,2}/\Lambda^4 < 15$
$-43 < f_{M,3}/\Lambda^4 < 44$	$-25 < f_{M,3}/\Lambda^4 < 27$
$-40 < f_{M,4}/\Lambda^4 < 40$	$-23 < f_{M,4}/\Lambda^4 < 24$
$-65 < f_{M,5}/\Lambda^4 < 65$	$-39 < f_{M,5}/\Lambda^4 < 39$
$-129 < f_{M,6}/\Lambda^4 < 129$	$-77 < f_{M,6}/\Lambda^4 < 77$
$-164 < f_{M,7}/\Lambda^4 < 162$	$-99 < f_{M,7}/\Lambda^4 < 97$
$-5.4 < f_{T,0}/\Lambda^4 < 5.6$	$-3.2 < f_{T,0}/\Lambda^4 < 3.4$
$-3.7 < f_{T,1}/\Lambda^4 < 4.0$	$-2.2 < f_{T,1}/\Lambda^4 < 2.5$
$-11 < f_{T,2}/\Lambda^4 < 12$	$-6.3 < f_{T,2}/\Lambda^4 < 7.9$
$-3.8 < f_{T,5}/\Lambda^4 < 3.8$	$-2.3 < f_{T,5}/\Lambda^4 < 2.4$
$-2.8 < f_{T,6}/\Lambda^4 < 3.0$	$-1.7 < f_{T,6}/\Lambda^4 < 1.9$
$-7.3 < f_{T,7}/\Lambda^4 < 7.7$	$-4.4 < f_{T.7}/\Lambda^4 < 4.7$

CMS-SMP-14-011

21

Searches for anomalous contributions to electroweak (EWK) production of

two vector bosons plus two jets.

- $W \rightarrow Iv \text{ and } V \rightarrow jj$ + 2 additional jets
- Singal include tau leptonic decays

Event Selection: pT(I) > 30 GeV, *E*miss > 30 GeV

- The hadronic portion of the event is selected with two criteria:
- **1. A "resolved" selection : Reconstructs**

the hadronically decaying W/Z candidate (Vhad) as two small-R jets ($V \rightarrow jj$),

- ✓ Event should have least four small-R jets
- 2. A "merged" selection: Reconstructs the V had as a single large-R jet (V \rightarrow J)
- ✓ Event should have at least one large-R jet

For Both criteria: 64 < m(Vhad) < 96 GeV , mjj,tag > 500 GeV

29/08/2017

WW/WZ - Selection

The main backgrounds are due to W + jets and tt⁻processes

Major systematics: W/Z + jets modeling tt⁻modeling Multijet yield

13% (Resolved) 14% (Resolved) 6% (Resolved) 29% (Merged) 7% (Merged) 5% (Merged)

29/08/2017

	Resolved channel		Merged channel
	e^+ and μ^+	e^- and μ^-	$e \text{ and } \mu$
W + jets	92 ± 37	51 ± 29	19.4 ± 9.9
$t \overline{t}$	59 ± 18	63 ± 35	6.8 ± 2.8
Single-top	10.0 ± 5.6	5.5 ± 3.2	2.2 ± 1.2
Diboson	8.6 ± 5.7	10.8 ± 6.4	1.6 ± 1.2
Z + jets	4.5 ± 1.5	3.4 ± 2.4	0.58 ± 0.64
Multijet	16 ± 16	12 ± 12	1.8 ± 1.9
Total background	190 ± 53	145 ± 54	32 ± 12
EWK WV (SM)	3.66 ± 0.82	2.34 ± 0.56	0.54 ± 0.22
EWK $WV \ (\alpha_4 = 0.1, \alpha_5 = 0)$	21.0 ± 4.2	9.2 ± 1.9	15.1 ± 4.4
Data	173	131	32

✓ The expected number of events passing the final event selection

The quoted errors include all systematic uncertainties in the expected yields.

29/08/2017

WW/WZ – aQGC Constraints

 ✓ At 95% CL, the observed confidence intervals are -0.024 < α4 < 0.030 and -0.028 < α5 < 0.033, where the confidence interval on each parameter is calculated while fixing the other parameter to zero.
 ✓ The expected 95% confidence intervals are -0.060 < α4 < 0.062 and -0.084 < α5 < 0.080.

- The use of the "merged" category of events significantly improves the aQGC sensitivity
- Most of the aQGC sensitivity comes from the highest-mT(WV) bins merged category is powerful.
- The expected aQGC confidence intervals are about 40% more stringent by including merged category.
 29/08/2017 Md. Naimuddirhttps://arxiv.org/pdf/1609.05122

aQGC Summary

July 2017		Channel	Limito	[/ dt	12
5 (1) 4		WVv	[-1.3e+02, 1.3e+02]	20.2 fb ⁻¹	8 TeV
$T_{M,0} / \Lambda$	''	WV _v	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
		Zγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
		Ζγ	[-7.6e+01, 6.9e+01]	20.2 fb^{-1}	8 TeV
	Ĥ	Ŵγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV
	Ή.	ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV
	Τ	ss WW	[-6.0e+00, 5.9e+00]	35.9 fb ⁻¹	13 TeV
	Ĥ	γγ→WW	[-2.8e+01, 2.8e+01]	20.2 fb ⁻¹	8 TeV
	Ϋ́Υ, Ϋ́Υ`, Ϋ́Υ, Ϋ́Υ`, Υ``, Ϋ́Υ`, Υ``, Ϋ́Υ`, Υ``, Υ``, Ϋ́Υ`, Υ``, Υ``, Υ``, Υ``, Υ``, Υ``, Υ``,	γγ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV
f / A 4		ŴVγ	[-2.1e+02, 2.1e+02]	20.2 fb ⁻¹	8 TeV
M,1 //	· · · · · · · · · · · · · · · · · · ·	WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
	<u> </u>	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹	8 TeV
	i Hanna di Katala di	Zγ	[-1.5e+02, 1.5e+02]	20.2 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ŵγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
	Η. Έ	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
		ss WW	[-8.7e+00, 9.1e+00]	35.9 fb ⁻¹	13 TeV
	⊢–⊣	γγ→WW	[-1.1e+02, 1.0e+02]	20.2 fb ⁻¹	8 TeV
	Н	γγ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV
f/Λ^4		Ζγγ	[-5.1e+02, 5.1e+02]	20.3 fb ⁻¹	8 TeV
M,2 / 1		Wγγ	[-7.0e+02, 6.8e+02]	19.4 fb ⁻¹	8 TeV
		Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV
	H	WVγ	[-5.7e+01, 5.7e+01]	20.2 fb ⁻¹	8 TeV
	H	Ζγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻]	8 TeV
	H	Ζγ	[-2.7e+01, 2.7e+01]	20.2 fb ⁻¹	8 TeV
	Η	Ψγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
$f_{\rm Max}/\Lambda^4$		Ζγγ	[-8.5e+02, 9.2e+02]	20.3 fb ⁻¹	8 TeV
·M,3 /		Wyy	[-1.2e+03, 1.2e+03]	19.4 fb ⁻	8 TeV
		ννγγ	[-4.4e+02, 4.7e+02]	20.3 fb	8 TeV
	<u> </u>	νννγ	[-9.5e+01, 9.8e+01]	20.2 fb	8 TeV
	H	$\leq \gamma$	[-5.8e+01, 5.9e+01]	19.7 fb ⁻	8 TeV
		Zγ	[-5.2e+01, 5.2e+01]	20.2 fb ⁻¹	8 leV
	Ħ	ννγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 lev
f_{MA}/Λ^4		vvvγ	[-1.3e+02, 1.3e+02]	20.2 fb ⁻¹	8 lev
101,4		WYY MAX		19.7 fb -	8 Iev
f_{M5} / Λ^4		VV VY	[-2.0e+02, 2.0e+02]	20.2 fb	
1		W/V/v	$[-0.50\pm07, 0.50\pm07]$	19.7 fD	8 TeV
f _{M.6} /Λ ⁴		Wor 1	[-2.30+02, 2.30+02]	20.2 ID	
inijo			[-6.5e+02, 1.3e+02]	19.7 ID 10.4 fb ⁻¹	
			[-1, 20+01, 1, 20+01]	19.4 ID 25.0 fb ⁻¹	
1 1 4		WVv	[-4 7e+02 4 7e+02]	20.2 fb ⁻¹	8 TeV
t _{M.7} /Λ*		Wv	[-1.6e+02, 1.6e+02]	20.2 ID 19 7 fb ⁻¹	8 TeV
	' 🛏 '	ee WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV
- I .		.ss WW	[-1.3e+01, 1.3e+01]	. 35.9lfb ⁻¹	13 TeV
				00.010	
2000	0	2000		4000	
	-				r- · / -4 -
		aQ	GC Limits @	95% C.L.	IeV ⁻

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSMPaTGC/aQGC_fm.pdf 29/08/2017 Md. Naimuddin

aQGC Summary

July 2017	CMS			(_
-	AILAS	Channel	Limits	J Ldt	
f_{TO} / Λ^4		VVyy	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 lev
1,0		VVYY	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 lev
		277	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 leV
		WVγ	[-1.8e+01, 1.8e+01]	20.2 fb ⁻¹	8 TeV
		WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻	8 TeV
	H	Ζγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	,H	Ζγ	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
	⊢ -1	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	H	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	H	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
	H A A A A A A A A A A A A A A A A A A A	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
f/Λ^4		WVγ	[-3.6e+01, 3.6e+01]	20.2 fb ⁻¹	8 TeV
'T,1 // `	H	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	н	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
		ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
	H	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
f /A ⁴		WVγ	[-7.2e+01, 7.2e+01]	20.2 fb ⁻¹	8 TeV
T,2 //	—	Zγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	· – ·	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	Ϋ́Η.	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	Ĥ	77	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
£ 1A4		Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
T _{,5} //		WVy	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
	́н ́	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
£ 1.4		ŴŶŶ	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV
$T_{T,6} / \Lambda^{-1}$	і ні	Wy .	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
£ 1.4		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb ⁻¹	8 TeV
$T_{T,7} / \Lambda$	· –	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
£ 1.4		Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
$T_{T,8} / \Lambda^{-1}$	ü	Ζγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	H	77	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
4		Zvv	[-7 4e+00 7 4e+00]	20.3 fb ⁻¹	8 TeV
$t_{T,9} / \Lambda^2$	с i цi	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
		_, Ζγ	[-3.9e+00, 3.9e+00]	20.2 fb^{-1}	8 TeV
1	'm'	77	[-1 8e+00 1 8e+00]	35.9 fb ⁻¹	13 TeV
	I I I			00.010	
-100	0	100	200)	300
		9	OGC Limite	05% CI	[T_]/ ⁻⁴]
		a		33 /0 U.L	

https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSMPaTGC/aQGC_ft.pdf 29/08/2017 Md. Naimuddin

Future Prospects

- Both ATLAS and CMS are planning to upgrade the detector for Phase 2 for increased performance and to handle high pile-up situations.
- Almost all the detector systems, Calorimetry, Tracking system and Muon stations are planned to be upgraded – Wider acceptance.
- Both ATLAS and CMS have performed the sensitivity studies for various VBS channels for Phase2 HL-LHC.
- ✓ Will discuss WW and WZ prospects.

$W^{\pm}W^{\pm} \rightarrow I^{\pm}I^{\pm}vv$

lepton pT>20 GeV, mll>40 GeV Δηll > 2, MET>40 GeV Two jets with pT > 30 GeV, Δηjj>2.5 Mjj> 850 GeV

Di-lepton invariant mass m_{II} for the Phase II detector, after the same-sign W[±]W[±] selection.

The ϕ angle between the tag jets $(\Delta \phi jj)$, for LL, TL, and TT components of the EWK W[±]w[±] after the same-sign W[±]W[±] selection and for the Phase II detector.

29/08/2017

Md. Naimuddin

CMS-SMP-14-008

$W^{\pm}W^{\pm} \rightarrow I^{\pm}I^{\pm}vv$

The expected discovery significance for the W_L scattering for the various detector scenarios with several possible scale factors to the fake rate after 3 ab⁻¹ of data.

The evolution of the discovery sensitivity, for the fake rate scale factor of 1.

CMS-SMP-14-008

29/08/2017

Md. Naimuddin

$W^{\pm}W^{\pm} \to I^{\pm}I^{\pm}vv$

- Exactly two selected leptons (each with pT > 25 GeV) with the same charge.
- At least one selected lepton must fire the trigger.
- At least two selected jets with pT > 50 GeV.
- m_{jj} > 1 TeV, where m_{jj} is the invariant mass of the two highest-pT selected jets.

5σ discovery values of f_s0

Naimuddin ATL-PHYS-PUB-2013-006 3

$WZqq \rightarrow 3lvjj$

 Exactly three selected leptons (each with pT > 25 GeV) which can be separated into an opposite

sign, same flavor pair and an additional single lepton

• At least one selected lepton must fire the trigger.

 At least two selected jets with pT > 50 GeV.

 mj j > 1 TeV, where mj j is the invariant mass of the two highest-pT selected jets

$$\frac{300 \, \text{fb}^{-1}}{f_{T1}/\Lambda^4} \frac{3000 \, \text{fb}^{-1}}{1.3 \, \text{TeV}^{-4}} \frac{3000 \, \text{fb}^{-1}}{0.6 \, \text{TeV}^{-4}}$$

 5σ discovery values of $f_{_{T1}}/\Lambda^4$

uddin ATL-PHYS-PUB-2013-006 32

WZqq → 3lvjj

300 fb-1 (Phase 1) with 50 pile-up event and current detector

- ➢ 3000 fb-1 (Phase 2) with 140 pile-up events and with the detector upgrade, without extended acceptance.
- lepton pT > 20 GeV/c, lepton $|\eta| < 2.4$
- $\Delta R(II') > 0.04, \ \Delta R(IJ') > 0.4$
- m_{II} > 20 GeV/c² for any same flavor opposite charge lepton pair
- MET > 30 GeV (300 fb⁻¹ only)
- jet pT > 50 GeV/c, jet |η| < 4.7, Δηjj > 4.0
- m_{ii} > 600 GeV/c2

Significance	3σ	5σ
SM EWK scattering discovery	75 fb ⁻¹	$185 {\rm fb^{-1}}$
f_{T1}/Λ^4 at 300 fb ⁻¹	$0.8 { m TeV^{-4}}$	$1.0 { m TeV^{-4}}$
f_{T1}/Λ^4 at 3000 fb $^{-1}$	$0.45 { m TeV^{-4}}$	$0.55 { m TeV^{-4}}$
<i>J</i> 11 ⁷		

29/08/2017

Md. Naimuddin

33

Conclusions

- * LHC is a discovery and precision measurement machine.
- VBS mechanism is becoming accessible now at LHC.
- Both ATLAS and CMS experiments have performed new and improved measurements.
- •Observation of Same sign WW and stringent limits on aQGC.
- Upgraded detectors with HL-LHC will be able to measure the VBS and shed light on EWSB.

THANK YOU!

Two-dimensional confidence regions in the aQGC parameter plane (α_4, α_5). The area outside the solid light blue region is excluded by the data at the 95% CL. The area outside the solid dark blue region is excluded at the 68% CL. The expected exclusion contour at the 95% CL is marked by the solid black line. For comparison, the expected exclusion contour at the 95% CL from the previous analysis of this final state [Phys. Rev. Lett. 113 (2014) 141803] is shown as a black dashed line.

$W^{\pm}W^{\pm} \rightarrow I^{\pm}I^{\pm}vv$

The expected total uncertainty for the various scenarios with several possible scale factors to the fake rate, for the same-sign EWK WW cross section measurement.

The evolution of the analysis uncertainty, for the unity scale factor of the fake rate, as a function of the collected luminosity.

Md. Naimuddin

CMS-SMP-14-008

37

WW/WZ-aQGC Constraints

	Expected	Expected $\pm 1\sigma$	Expected $\pm 2\sigma$	Observed
lower limit, α_4	-0.060	[-0.11, -0.030]	[-0.26, -0.015]	-0.024
upper limit, α_4	0.062	[0.034, 0.091]	[0.018, 0.20]	0.030
lower limit, α_5	-0.084	[-0.15, -0.034]	[-0.24, -0.018]	-0.028
upper limit, α_5	0.080	[0.039, 0.13]	[0.024, 0.23]	0.033

The observed and expected lower and upper limits of the 95% confidence intervals for α_4 and α_5 . The ± 1 σ and ±2 σ uncertainty bands on the expected lower and upper limits are also shown for comparison. The α_4 confidence intervals are computed while fixing α_5 to zero, and vice-versa.