Energy and Accuracy, and DiBosons

Andrea Wulzer

Energy and Accuracy Frontier

Energy Frontier: new particle prod.

Energy and Accuracy Frontier

Energy and Accuracy Frontier

Energy Frontier @ LHC: Direct Searches

The simplest and most common way to use LHC data ...

... and the best one to make quick progresses at run-2

Energy Frontier @ LHC: Direct Searches

The simplest and most common way to use LHC data ...

... and the best one to make quick progresses at run-2 Not much improvement at run-3 and at HL-LHC

Accuracy Frontier @ LHC: Higgs

Higgs couplings probe many BSM scenarios, among which **SUSY** and **Composite Higgs**

Accuracy Frontier @ LHC: Higgs

Higgs couplings probe many BSM scenarios, among which SUSY and Composite Higgs

Accuracy Frontier @ LHC: Higgs

Higgs couplings probe many BSM scenarios, among which SUSY and Composite Higgs

But at run-2,3,HL-LC progresses will be slow:

	Uncertainty (%)			
Coupling	300	fb^{-1}	3000 fb^{-1}	
	Scenario 1	Scenario 2	Scenario 1	Scenario 2
κ_{γ}	6.5	5.1	5.4	1.5
κ_V	5.7	2.7	4.5	1.0
κ_g	11	5.7	7.5	2.7
κ_b	15	6.9	11	2.7
κ_t	14	8.7	8.0	3.9
$\kappa_{ au}$	8.5	5.1	5.4	2.0

from CERN-CMS-NOTE-2012-006

Close to the threshold due to systematics

Beyond Higgs couplings

Physics modifying couplings also affects other EW obs. In EFT description: (appropriate if BSM is heavy)

steady improvement with lumi.

Beyond Higgs couplings

Physics modifying couplings also affects other EW obs. In EFT description: (appropriate if BSM is heavy)

1% @ $100 \, \mathrm{GeV} \sim 10\%$ @ $1 \, \mathrm{TeV}$

LHC better than LEP on some EWPT par.?

Plus of course probing operators not constrained by LEP

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Simplest EW process: Drell-Yan (I+I- or Inu)

Simplest BSM effects: Oblique corrections

$$P_{N} = \begin{bmatrix} \frac{1}{q^{2}} - \frac{t^{2}W + Y}{m_{Z}^{2}} & \frac{t((Y + \hat{T})c^{2} + s^{2}W - \hat{S})}{(c^{2} - s^{2})(q^{2} - m_{Z}^{2})} + \frac{t(Y - W)}{m_{Z}^{2}} \\ \star & \frac{1 + \hat{T} - W - t^{2}Y}{q^{2} - m_{Z}^{2}} - \frac{t^{2}Y + W}{m_{Z}^{2}} \end{bmatrix}$$

$$P_C = \frac{1 + ((\hat{T} - W - t^2 Y) - 2t^2 (\hat{S} - W - Y))/(1 - t^2)}{(q^2 - m_W^2)} - \frac{W}{m_W^2},$$

4 par.s, with **% limit** from **very accurate, low energy** (LEP) measurements

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Simplest EW process: Drell-Yan (I+I- or Inu) Simplest BSM effects: Oblique corrections

$$P_{N} = \begin{bmatrix} \frac{1}{q^{2}} - \frac{t^{2}W + Y}{m_{Z}^{2}} & \frac{t((Y + \hat{T})c^{2} + s^{2}W - \hat{S})}{(c^{2} - s^{2})(q^{2} - m_{Z}^{2})} + \frac{t(Y - W)}{m_{Z}^{2}} \\ \star & \frac{1 + \hat{T} - W - t^{2}Y}{q^{2} - m_{Z}^{2}} - \frac{t^{2}Y + W}{m_{Z}^{2}} \end{bmatrix}$$

$$P_C = \frac{1 + ((\hat{\mathbf{T}} - \mathbf{W} - t^2 \mathbf{Y}) - 2t^2 (\hat{\mathbf{S}} - \mathbf{W} - \mathbf{Y}))/(1 - t^2)}{(q^2 - m_W^2)} - \frac{\mathbf{W}}{m_W^2},$$

4 par.s, with **% limit** from **very accurate, low energy** (LEP) measurements

 \hat{S} and \hat{T} : only affect pole residues, i.e., tot. X-sec. LHC measurements (%, from syst.) are not competitive

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Simplest EW process: Drell-Yan (I+I- or Inu)

Simplest BSM effects: Oblique corrections

$$P_{N} = \begin{bmatrix} \frac{1}{q^{2}} - \frac{t^{2}W + Y}{m_{Z}^{2}} & \frac{t((Y + \hat{T})c^{2} + s^{2}W - \hat{S})}{(c^{2} - s^{2})(q^{2} - m_{Z}^{2})} + \frac{t(Y - W)}{m_{Z}^{2}} \\ \star & \frac{1 + \hat{T} - W - t^{2}Y}{q^{2} - m_{Z}^{2}} - \frac{t^{2}Y + W}{m_{Z}^{2}} \end{bmatrix}$$

$$P_C = \frac{1 + ((\hat{\mathbf{T}} - \mathbf{W} - t^2 \mathbf{Y}) - 2t^2 (\hat{\mathbf{S}} - \mathbf{W} - \mathbf{Y}))/(1 - t^2)}{(q^2 - m_W^2)} - \frac{\mathbf{W}}{m_W^2},$$

4 par.s, with ‰ limit from very accurate, low energy (LEP) measurements

 \hat{S} and \hat{T} : only affect pole residues, i.e., tot. X-sec. LHC measurements (%, from syst.) are not competitive

W and Y: produce constant terms. quadratically enhanced at high mass. What can LHC do?

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Ingredients for the program to work:

Accurate experimental measurement:

Run-I (8 TeV) neutral DY (from ATLAS)

$m_{\ell\ell}$	$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}}$	$\delta^{ m stat}$	$\delta^{ m sys}$	$\delta^{ m tot}$
[GeV]	[pb/GeV]	[%]	[%]	[%]
116–130	2.28×10^{-1}	0.34	0.53	0.63
130–150	1.04×10^{-1}	0.44	0.67	0.80
150–175	4.98×10^{-2}	0.57	0.91	1.08
175–200	2.54×10^{-2}	0.81	1.18	1.43
200–230	1.37×10^{-2}	1.02	1.42	1.75
230–260	7.89×10^{-3}	1.36	1.59	2.09
260-300	4.43×10^{-3}	1.58	1.67	2.30
300–380	1.87×10^{-3}	1.73	1.80	2.50
380-500	6.20×10^{-4}	2.42	1.71	2.96
500-700	1.53×10^{-4}	3.65	1.68	4.02
700–1000	2.66×10^{-5}	6.98	1.85	7.22
1000-1500	2.66×10^{-6}	17.05	2.95	17.31

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Ingredients for the program to work:

Accurate experimental measurement:

Run-I (8 TeV) neutral DY (from ATLAS)

$m_{\ell\ell}$	$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}}$	$\delta^{ m stat}$	$\delta^{ m sys}$	$\delta^{ m tot}$
[GeV]	[pb/GeV]	[%]	[%]	[%]
116–130	2.28×10^{-1}	0.34	0.53	0.63
130–150	1.04×10^{-1}	0.44	0.67	0.80
150–175	4.98×10^{-2}	0.57	0.91	1.08
175–200	2.54×10^{-2}	0.81	1.18	1.43
200-230	1.37×10^{-2}	1.02	1.42	1.75
230–260	7.89×10^{-3}	1.36	1.59	2.09
260-300	4.43×10^{-3}	1.58	1.67	2.30
300-380	1.87×10^{-3}	1.73	1.80	2.50
380-500	6.20×10^{-4}	2.42	1.71	2.96
500-700	1.53×10^{-4}	3.65	1.68	4.02
700–1000	2.66×10^{-5}	6.98	1.85	7.22
1000-1500	2.66×10^{-6}	17.05	2.95	17.31

~ 1 TeV measured at ~ 10%

Reach comparable with LEP?

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Ingredients for the program to work:

Accurate experimental measurement: Syst. ~ 2%

Run-I (8 TeV) neutral DY (from ATLAS)

$m_{\ell\ell}$	$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}}$	$\delta^{ m stat}$	$\delta^{ m sys}$	$\delta^{ m tot}$
[GeV]	[pb/GeV]	[%]	[%]	[%]
116–130	2.28×10^{-1}	0.34	0.53	0.63
130–150	1.04×10^{-1}	0.44	0.67	0.80
150–175	4.98×10^{-2}	0.57	0.91	1.08
175–200	2.54×10^{-2}	0.81	1.18	1.43
200–230	1.37×10^{-2}	1.02	1.42	1.75
230–260	7.89×10^{-3}	1.36	1.59	2.09
260–300	4.43×10^{-3}	1.58	1.67	2.30
300-380	1.87×10^{-3}	1.73	1.80	2.50
380-500	6.20×10^{-4}	2.42	1.71	2.96
500-700	1.53×10^{-4}	3.65	1.68	4.02
700–1000	2.66×10^{-5}	6.98	1.85	7.22
1000-1500	2.66×10^{-6}	17.05	2.95	17.31

~ 1 TeV measured at ~ 10%

Reach comparable with LEP?

Statistically dominated error

>> X-sec (at high mass) @ run-2

Run-2 will surpass LEP?

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Ingredients for the program to work:

Accurate experimental measurement: Syst. ~ 2% Theory errors well under control:

q-qbar PDF error < 10% below 3 (4) TeV @ run-1 (run-2)

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Ingredients for the program to work:

Accurate experimental measurement: Syst. ~ 2% Theory errors well under control:

- q-qbar PDF error < 10% below 3 (4) TeV @ run-1 (run-2)
- NNLO QCD (FEWZ): < 1 % scale variation
- NLO EW known and under control
- photon PDF uncertainty safely small [Manohar, Nason, Salam, Zanderighi, 2016]

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Neutral DY @ run-1 is competitive with LEP

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Neutral DY @ run-1 is competitive with LEP Charged DY @ run-1 would surpass LEP

No measurement available, extrapolation assumes (conservative) 5% systematic

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Neutral DY @ run-1 is competitive with LEP Charged DY @ run-1 would surpass LEP Neut./Ch. DY @ run-2/3 is much better than LEP

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

Neutral DY @ run-1 is competitive with LEP
Charged DY @ run-1 would surpass LEP
Neut./Ch. DY @ run-2/3 is much better than LEP
Raising energy better than raising lumi (part.lumi boost)

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

EFT Validity Check: Limit from scales (2-3 TeV) well below cutoff

$$-\frac{W}{4m_W^2} (D_\rho W_{\mu\nu}^a)^2$$
$$-\frac{Y}{4m_W^2} (\partial_\rho B_{\mu\nu})^2$$

$$-\frac{Y}{4m_W^2}(\partial_\rho B_{\mu\nu})^2$$

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

EFT Validity Check: Limit from scales (2-3 TeV) well below cutoff

far from pert.unit. break

[Farina, Panico, Pappadopulo, Ruderman, Torre AW, 2016]

EFT Validity Check: Limit from scales (2-3 TeV) well below cutoff

Mass limit competitive or stronger than direct searches for small-coupling SILH realisation or for W-compositeness "remedios" power-counting

More model-independent limits, better from "exploration" view-point.

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

W/Y limits easily evaded by strongly-coupled SILH:

$$-\frac{W}{4m_W^2}(D_\rho W_{\mu\nu}^a)^2 - \frac{Y}{4m_W^2}(\partial_\rho B_{\mu\nu})^2 \sim \frac{g_W^2}{g_*^2} \cdot \frac{1}{m_*^2}$$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

W/Y limits easily evaded by strongly-coupled SILH:

$$-\frac{W}{4m_W^2}(D_\rho W_{\mu\nu}^a)^2 - \frac{Y}{4m_W^2}(\partial_\rho B_{\mu\nu})^2 \sim \frac{g_W^2}{g_*^2} \cdot \frac{1}{m_*^2}$$

Some un-suppressed operators: $\sim 1/m_*^2$ (SILH-basis coefficient)

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a} \\
\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\
\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W_{\mu\nu}^{a} \\
\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$$

$$\mathcal{O}_{R}^{(3)} = (\bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}) (iH^{\dagger} \sigma^{a} D^{\mu}H) \\
\mathcal{O}_{L} = (\bar{Q}_{L} \gamma^{\mu} Q_{L}) (iH^{\dagger} D^{\mu}H) \\
\mathcal{O}_{R}^{u} = (\bar{u}_{R} \gamma^{\mu} u_{R}) (iH^{\dagger} D^{\mu}H) \\
\mathcal{O}_{R}^{d} = (\bar{d}_{R} \gamma^{\mu} d_{R}) (iH^{\dagger} D^{\mu}H)$$

SILH basis

$$\mathcal{O}_{L}^{(3)} = (\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L})(iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{L} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{R}^{u} = (\bar{u}_{R}\gamma^{\mu}u_{R})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{R}^{d} = (\bar{d}_{R}\gamma^{\mu}d_{R})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

Warsaw basis

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

W/Y limits easily evaded by strongly-coupled SILH:

$$-\frac{W}{4m_W^2}(D_\rho W_{\mu\nu}^a)^2 - \frac{Y}{4m_W^2}(\partial_\rho B_{\mu\nu})^2 \sim \frac{g_W^2}{g_*^2} \cdot \frac{1}{m_*^2}$$

Some un-suppressed operators: $\sim 1/m_*^2$ (SILH-basis coefficient)

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a}
\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}
\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W_{\mu\nu}^{a}
\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$$

$$\mathcal{O}_{L} = (\bar{Q}_{L} \gamma^{\mu} Q_{L}) (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)
\mathcal{O}_{R}^{u} = (\bar{u}_{R} \gamma^{\mu} u_{R}) (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)
\mathcal{O}_{R}^{d} = (\bar{d}_{R} \gamma^{\mu} d_{R}) (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)$$

SILH basis

$$\mathcal{O}_{L}^{(3)} = (\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L})(iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{L} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{R}^{u} = (\bar{u}_{R}\gamma^{\mu}u_{R})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

$$\mathcal{O}_{R}^{d} = (\bar{d}_{R}\gamma^{\mu}d_{R})(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H)$$

Warsaw basis

Valid channels for energy and accuracy frontier exploration?

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

G_{SM} restoration implies **relations** among H and V_L high-energy production

Equivalence Theorem makes such relations evident: [see also AW, 2014]

$$\bigvee_{i=1}^{V_L} \bigvee_{i=1}^{V_L} = \underbrace{v}_{i} - \underbrace{O(m_W/E)} \qquad |\Phi\rangle_i = \left[\begin{array}{c} |w^+\rangle \\ \frac{1}{\sqrt{2}}(|h\rangle - |z\rangle) \end{array}\right]_i \in \mathbf{2}_{1/2}$$

V_L and H in same multiplet: V_L V_L and V_L H contain same information

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

G_{SM} restoration implies **relations** among H and V_L high-energy production

Equivalence Theorem makes such relations evident: [see also AW, 2014]

V_L and H in same multiplet: V_L V_L and V_L H contain same information

E²-enhanced BSM in $q\overline{q} \to \Phi\Phi'$ only sensitive to **4 H.E. Primaries** [under reasonable assumptions]

$$\delta \mathcal{A} \left(q'_{\pm} \overline{q}_{\mp} \to \Phi \Phi' \right) = f_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'}(s) \sin \theta = 4 A_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'} \frac{s}{\Lambda^{2}} \sin \theta + O(s^{2}/\Lambda^{4}) \qquad \Lambda \equiv \mathbf{1} \text{ TeV}$$

$$A_{u_{+} \overline{u}_{-}}^{W^{+}W^{-}} = A_{u_{+} \overline{u}_{-}}^{Zh} = a_{u} , \qquad A_{d_{+} \overline{d}_{-}}^{W^{+}W^{-}} = A_{d_{+} \overline{d}_{-}}^{Zh} = a_{d} ,$$

$$A_{u_{-} \overline{u}_{+}}^{W^{+}W^{-}} = A_{d_{-} \overline{d}_{+}}^{Zh} = a_{q}^{(1)} + a_{q}^{(3)} , \qquad A_{d_{-} \overline{d}_{+}}^{W^{+}W^{-}} = A_{u_{-} \overline{u}_{+}}^{Zh} = a_{q}^{(1)} - a_{q}^{(3)}$$

$$A_{u_{+} \overline{d}_{-}}^{hW^{+}} = A_{u_{+} \overline{d}_{-}}^{ZW^{+}} = A_{d_{+} \overline{u}_{-}}^{hW^{-}} = -A_{d_{+} \overline{u}_{-}}^{ZW^{-}} = \sqrt{2} a_{q}^{(3)}$$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

G_{SM} restoration implies **relations** among H and V_L high-energy production

Equivalence Theorem makes such relations evident: [see also AW, 2014]

V_L and H in same multiplet: V_L V_L and V_L H contain same information

E²-enhanced BSM in $q\overline{q} \to \Phi\Phi'$ only sensitive to **4 H.E. Primaries** [under reasonable assumptions]

$$\delta \mathcal{A} \left(q'_{\pm} \overline{q}_{\mp} \to \Phi \Phi' \right) = f_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'}(s) \sin \theta = 4 A_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'} \frac{s}{\Lambda^{2}} \sin \theta + O(s^{2}/\Lambda^{4}) \qquad \Lambda \equiv \mathbf{1} \text{ TeV}$$

$$A_{u_{+} \overline{u}_{-}}^{W^{+}W^{-}} = A_{u_{+} \overline{u}_{-}}^{Zh} = a_{u} , \quad A_{d_{+} \overline{d}_{-}}^{W^{+}W^{-}} = A_{d_{+} \overline{d}_{-}}^{Zh} = a_{d} ,$$

$$A_{u_{-} \overline{u}_{+}}^{W^{+}W^{-}} = A_{d_{-} \overline{d}_{+}}^{Zh} = a_{q}^{(1)} + a_{q}^{(3)} , \quad A_{d_{-} \overline{d}_{+}}^{W^{+}W^{-}} = A_{u_{-} \overline{u}_{+}}^{Zh} = a_{q}^{(1)} - a_{q}^{(3)}$$

$$A_{u_{+} \overline{d}_{-}}^{hW^{+}} = A_{u_{+} \overline{d}_{-}}^{ZW^{+}} = A_{d_{+} \overline{u}_{-}}^{hW^{-}} = -A_{d_{+} \overline{u}_{-}}^{ZW^{-}} = \sqrt{2} a_{q}^{(3)}$$

$$Simple map to Warsaw basis$$

$$a_{u} = c_{u}^{u} , \quad a_{d} = c_{u}^{d} ,$$

$$a_{u} = c_{u}^{u} , \quad a_{d} = c_{u}^{d} ,$$

$$c_{L}^{(1)} = a_{q}^{(1)} , \quad c_{L}^{(3)} = a_{q}^{(3)} ,$$

$$c_{L}^{(1)} = a_{q}^{(1)} , \quad c_{L}^{(3)} = a_{q}^{(3)} ,$$

$$a_u = c_R^u , \quad a_d = c_R^d$$
 $c_L^{(1)} = a_q^{(1)} , \quad c_L^{(3)} = a_q^{(3)}$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

G_{SM} restoration implies **relations** among H and V_L high-energy production

_			
	Amplitude	High-energy primaries	Deviations from SM couplings
	$\bar{u}_L d_L \to W_L Z_L, W_L h$	$\sqrt{2}a_q^{(3)}$	$\sqrt{2} \frac{g^2 \Lambda^2}{4m_W^2} \left[c_{\theta_W} (\boldsymbol{\delta g_{uL}^Z} - \boldsymbol{\delta g_{dL}^Z}) / g - c_{\theta_W}^2 \boldsymbol{\delta g_1^Z} \right]$
	$\bar{u}_L u_L \to W_L W_L$	$a_q^{(1)} + a_q^{(3)}$	$-\frac{g^2\Lambda^2}{2m_W^2}\left[Y_L t_{\theta_W}^2 \boldsymbol{\delta\kappa_{\gamma}} + T_Z^{u_L} \boldsymbol{\delta g_1^Z} + c_{\theta_W} \boldsymbol{\delta g_{dL}^Z}/g\right]$
	$\bar{d}_L d_L o Z_L h$		
	$\bar{d}_L d_L \to W_L W_L$	$a_q^{(1)} - a_q^{(3)}$	$-rac{g^2\Lambda^2}{2m_W^2}\left[Y_L t_{ heta_W}^2 oldsymbol{\delta\kappa_{\gamma}} + T_Z^{d_L} oldsymbol{\delta g_1^Z} + c_{ heta_W} oldsymbol{\delta g_{uL}^Z}/g ight]$
	$\bar{u}_L u_L \to Z_L h$		
	$\bar{f}_R f_R \to W_L W_L, Z_L h$	a_f	$-\frac{g^2\Lambda^2}{2m_W^2}\left[Y_{f_R}t_{\theta_W}^2\boldsymbol{\delta\kappa_{\gamma}}+T_Z^{f_R}\boldsymbol{\delta g_1^Z}+c_{\theta_W}\boldsymbol{\delta g_{fR}^Z}/g\right]$

$$\delta \mathcal{A} \left(q'_{\pm} \overline{q}_{\mp} \to \Phi \Phi' \right) = f_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'}(s) \sin \theta = 4 A_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'} \frac{s}{\Lambda^{2}} \sin \theta + O(s^{2}/\Lambda^{4}) \qquad \Lambda \equiv \mathbf{1} \text{ TeV}$$

$$A_{u_{+} \overline{u}_{-}}^{W^{+}W^{-}} = A_{u_{+} \overline{u}_{-}}^{Zh} = a_{u} , \quad A_{d_{+} \overline{d}_{-}}^{W^{+}W^{-}} = A_{d_{+} \overline{d}_{-}}^{Zh} = a_{d} ,$$

$$A_{u_{-} \overline{u}_{+}}^{W^{+}W^{-}} = A_{d_{-} \overline{d}_{+}}^{Zh} = a_{q}^{(1)} + a_{q}^{(3)} , \quad A_{d_{-} \overline{d}_{+}}^{W^{+}W^{-}} = A_{u_{-} \overline{u}_{+}}^{Zh} = a_{q}^{(1)} - a_{q}^{(3)}$$

$$A_{u_{-} \overline{u}_{+}}^{hW^{+}} = A_{u_{+} \overline{d}_{-}}^{ZW^{+}} = A_{d_{+} \overline{u}_{-}}^{hW^{-}} = -A_{d_{+} \overline{u}_{-}}^{ZW^{-}} = \sqrt{2} a_{q}^{(3)}$$

$$Simple map to Warsaw basis$$

$$a_{u} = c_{u}^{u} , \quad a_{d} = c_{u}^{d}$$

$$a_{u} = c_{u}^{u} , \quad a_{d} = c_{u}^{d}$$

$$c_{L}^{(1)} = a_{q}^{(1)} , \quad c_{L}^{(3)} = a_{q}^{(3)}$$

 $\Lambda \equiv 1 \; {
m TeV}$

$$a_u = c_R^u , \quad a_d = c_R^d$$
 $c_L^{(1)} = a_q^{(1)} , \quad c_L^{(3)} = a_q^{(3)}$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

Naive estimate of the reach (on one benchmark operator) Leading order, high PT, no systematics, no detector

	bounds with bkg.	bounds no bkg.	channel
→ Top/bb Higgs fakes	[-0.089, 0.078] —	[-0.024, 0.024]	$\mathrm{W}_l\mathrm{H}_h$
→ Maybe promising [for a ⁽¹⁾]	_	[-0.074, 0.070]	$\mathrm{Z}_l\mathrm{H}_h$
→ Swamped by V _T production	[-0.11, 0.093] —	[-0.029, 0.028]	$\mathrm{W}_l\mathrm{W}_l$
Less V _T background	[-0.057, 0.052] —	[-0.032, 0.031]	$\mathrm{W}_l\mathrm{Z}_l$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

Naive estimate of the reach (on one benchmark operator) Leading order, high PT, no systematics, no detector

channel	bounds no bkg.	bounds with bkg.	
$\mathrm{W}_l\mathrm{H}_h$	[-0.024, 0.024]	[-0.089, 0.078] —	Top/bb Higgs fakes
$\mathrm{Z}_{l}\mathrm{H}_{h}$	[-0.074, 0.070]	_	→ Maybe promising [for a ⁽¹⁾]
$\mathrm{W}_l\mathrm{W}_l$	[-0.029, 0.028]	[-0.11, 0.093] —	Swamped by V _T production
$\mathrm{W}_l\mathrm{Z}_l$	[-0.032, 0.031]	[-0.057, 0.052] —	Less V _T background

Summary:

Channel	Challenge
WW WZ	V _T Background
WH ZH	Needs Boosted Higgs

Leptonic WZ

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

Exploit (~accidental) ~vanishing transverse amplitude at $\theta=\pi/2$

Suppress real NLO by upper cut on total WZ PT

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

Results: [MG@NLO, assumed 10%/5% syst., found <5% NLO scale unc.]

LHC vs LEP (Univ. Th.)

Imposing strong W/Y/S bounds

$$a_{q}^{(3)} = -\frac{g^{2}\Lambda^{2}}{4m_{W}^{2}} \left(c_{\theta_{W}}^{2} \delta g_{1}^{Z} + W \right)$$

$$a_{q}^{(1)} = \frac{g^{2}\Lambda^{2}}{12m_{W}^{2}} t_{\theta_{W}}^{2} \left(\widehat{S} - \delta \kappa_{\gamma} + c_{\theta_{W}}^{2} \delta g_{1}^{Z} - Y \right)$$

LHC vs LEP (Composite Higgs)

Power-counting + loop suppression

$$a_q^{(3)} = \frac{g^2}{4}(c_W + c_{HW} - c_{ZW})$$

$$\hat{S} = (c_W + c_B)\frac{m_W^2}{\Lambda^2}$$

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

[Franceschini, Panico, Pomarol, Riva, AW, to appear]

The most important plot: reach now extends to reasonable theories!

We are sensitive to UV theories where W is elementary!

Transverse DiBoson

[Panico, Riva, AW, arXiv:1708.07823]

Interference Resurrection: see Riva's talk

Conclusions

- EWPT's are possible at the LHC Exploiting energetic and accurate measurements
- LHC will be better than LEP in W and Y determination Most sensitive probes of W-compositeness "remedios" scenario, and of Heavy (composite) spin-1 resonances at low coupling

Conclusions

- EWPT's are possible at the LHC Exploiting energetic and accurate measurements
- LHC will be better than LEP in W and Y determination Most sensitive probes of W-compositeness "remedios" scenario, and of Heavy (composite) spin-1 resonances at low coupling
- VV/VH play major role in energy and accuracy exploration Sensitive to other, non-g_{*}-suppressed, EFT operators We do really (valid EFT) beat LEP TGC with today's data HL-LHC will compete with LEP in MCHM (cw=c_B)

Conclusions

- EWPT's are possible at the LHC Exploiting energetic and accurate measurements
- LHC will be better than LEP in W and Y determination Most sensitive probes of W-compositeness "remedios" scenario, and of Heavy (composite) spin-1 resonances at low coupling
- VV/VH play major role in energy and accuracy exploration Sensitive to other, non-g_{*}-suppressed, EFT operators We do really (valid EFT) beat LEP TGC with today's data HL-LHC will compete with LEP in MCHM (c_w=c_B)
- What next?

We just started a preliminary investigation of Diboson channels Many more (HZ, HW?, some hadronic V?) should be explored **EXP/SM/BSM cooperation** is **essential** for this program

Backup

Assumptions behind primaries dominance:

1) Anomalous Hqq negligibly small:

2) d=6 contact interactions only: [implies purely J=1 partial wave amplitude]

$$\delta \mathcal{A} \left(q'_{\pm} \overline{q}_{\mp} \to \Phi \Phi' \right) = f_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'}(s) \sin \theta = 4 A_{q'_{\pm} \overline{q}_{\mp}}^{\Phi \Phi'} \frac{s}{\Lambda^2} \sin \theta + O(s^2 / \Lambda^4)$$

All the rest is derived from G_{SM} symmetry

Backup

Naive estimate of expected rates [3/ab]

channel		[200, 400]	[400, 600]	[600, 1000]	[1000, 2000]
WH	signal	$3700 + 2700 c_{HW}$	$570 + 1140 c_{HW}$	$125 + 560 c_{HW}$	
	signal substr. [?]	$2230 + 1290 c_{HW}$	$368 + 670 c_{HW}$	$108 + 450 c_{HW}$	
	bkg. substr. [?]	11400	1720	700	
ZH	signal	$600 + 340 c_{HW}$	$84 + 155 c_{HW}$	$17 + 71 c_{HW}$	
WW	signal	$5080 + 2980 c_{HW}$	$380 + 690 c_{HW}$	$74 + 310 c_{HW}$	$5.8 + 64 c_{HW}$
	bkg.	89500	5500	990	69
WZ	signal	$2970 + 2020 c_{HW}$	$226 + 485 c_{HW}$	$46 + 217 c_{HW}$	$3.7 + 49 c_{HW}$
	bkg.	10800	600	100	6.0