Status of EW NLO corrections for multi-boson processes

Mathieu PELLEN

Institute for Theoretical Physics and Astrophysics, University Würzburg

> MBI 2017 workshop Karlsruhe, Germany

 29^{th} of August 2017

\rightarrow Precision physics in both experiment and theory

Mathieu PELLEN

Status of EW NLO corrections for multi-boson processes

Electroweak (EW) corrections

- $\mathcal{O}(\alpha) \rightarrow \alpha \sim \alpha_s^2$
- Large in high energy region

 \rightarrow Sudakov logarithms: $-\frac{\alpha}{4\pi} \log^2 \left(s_{ij} / M_W^2 \right)$

Recent NLO EW computations at the LHC

Di-boson production:

- Stable W/Z [Bierweiler et al.; 1208.3147, 1305.5402], [Baglio, Le, Weber; 1307.4331]
- Approximate in HERWIG++ [Gieseke, Kasprzik, Kühn; 1401.3964]
- WW in DPA [Billoni, et al.; 1310.1564]

\rightarrow Full NLO EW and off-shell computations:

- Z γ [Denner, et al.; 1510.08742]
- W γ [Denner, et al.; 1412.7421]
- <u>WZ</u> [Biedermann, et al.; 1708.06938]
- WW [Biedermann et al., 1605.03419]
- ZZ [Biedermann, et al.; 1601.07787, 1611.05338], [Biedermann, MP et al.; 1704.05783], [Kallweit, et al.; 1705.00598]

Recent NLO EW computations at the LHC

Tri-boson production (NWA and LO decay):

- $\mathsf{ZZ}\gamma$ [Yong et al., 1707.03534]
- <u>WWW</u> [Yong-Bai et al., 1605.00554], [Dittmaier, Huss, Knippen; 1705.03722] (on-shell)
- WZZ [Yong-Bai et al., 1507.03693]
- ZZZ [Hong et al., 1610.05876]

Di-boson + X production (off-shell):

- $\gamma\gamma+2 {
 m jets}$ [Fäh, Greiner; 1706.08309], [Chiesa et al.; 1706.09022]
- WWbb (tt) [Denner, MP, et al.; 1607.05571]
- WWbbH (tth) [Denner, MP; 1612.07138]
- WW2j (VBS) [Biedermann, Denner, MP; 1708.00268, 1611.02951]

Automatisation of NLO EW computations

- GOSAM: gosam.hepforge.org
- MADLOOP: launchpad.net/mg5amcnlo
 - \rightarrow obtained in MADGRAPH5_AMC@NLO (MG5)
- OPENLOOPS: openloops.hepforge.org
- RECOLA: recola.hepforge.org

Generator	Monte Carlo	Processes	Availability
GoSam	private MC	generated	soon
MadLoop	MG5	generated	soon
OpenLoops	SHERPA, private MC	libraries	soon
Recola	SHERPA, private MC	dynamical	soon

→ See Steffen Schumann's talk:

SHERPA+OPENLOOPS and SHERPA+RECOLA

Mathieu PELLEN

Status of EW NLO corrections for multi-boson processes

Biased selection

- \rightarrow Biased selection:
- (2) pp $\rightarrow 2\ell 2\nu$
- 3 pp \rightarrow WWW

 $\begin{array}{c} \mathbf{pp} \rightarrow \mathbf{3}\ell\nu\\ \mathbf{pp} \rightarrow 2\ell 2\nu\\ \mathbf{pp} \rightarrow WWW\\ \mathbf{pp} \rightarrow \mu^+\nu_\mu\mathbf{e}^+\nu_{\mathbf{e}}\mathbf{jj}\\ \mathbf{Conclusion} \end{array}$

Content

- 2 pp $ightarrow 2\ell 2
 u$
- \bigcirc pp \rightarrow WWW
- (4) $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

$\mathrm{pp} ightarrow 3\ell u$ / WZ

State of the art for EW computation:

- → New: [Biedermann, Denner, Hofer; 1708.06938]
 - pp $\rightarrow \mu^+ \mu^- e^+ \nu_e$, $\mu^+ \mu^- e^- \bar{\nu}_e$, $\mu^+ \mu^- \mu^+ \nu_\mu$, $\mu^+ \mu^- \mu^- \bar{\nu}_\mu$
 - Full NLO EW for off-shell production
 - Two different set-ups:
 - inclusive and anomalous triple gauge coupling (aTGC) search
 - NLO photon induced contribution

 $\begin{array}{c} \mathbf{pp} \rightarrow \mathbf{3}\ell\nu\\ \mathbf{pp} \rightarrow 2\ell 2\nu\\ \mathbf{pp} \rightarrow WWW\\ \mathbf{pp} \rightarrow \mu^+\nu_\mu\mathbf{e}^+\nu_{\mathbf{e}}\mathbf{jj}\\ \mathrm{Conclusion} \end{array}$

Fiducial cross section

mixed flavour $[2\mu e \nu]$		$\sigma_{ m LO}~[{\rm fb}]$	$\delta_{\bar{q}q'}(\%)$	$\delta_{q\gamma}$ (%)	$\delta_{ m NLO}$ (%)
inclusive	$\mathrm{pp} ightarrow \mu^+ \mu^- \mathrm{e}^+ u_\mathrm{e} + X$	27.303(1)	-3.308(5)	+1.9564(4)	-1.351(5)
TGC	$\mathrm{pp} \rightarrow \mu^+ \mu^- \mathrm{e}^+ \nu_\mathrm{e} + X$	19.1625(6)	-5.986(6)	+1.6971(3)	-4.289(6)

[Biedermann, Denner, Hofer; 1708.06938]

- Different LO cross sections: due to more exclusive cuts in TGC set-up
- Positive photon-induced contribution: compensating partly the qq' EW corrections
- Different qq' EW corrections according to the set-up
- -2% difference vs. on-shell calculation [Baglio, Le, Weber; 1307.4331] \rightarrow Effect of final state radiations

 $\begin{array}{c} \mathbf{pp} \rightarrow \mathbf{3}\ell\nu\\ \mathbf{pp} \rightarrow 2\ell 2\nu\\ \mathbf{pp} \rightarrow WWW\\ \mathbf{pp} \rightarrow \mu^+\nu_\mu\mathbf{e}^+\nu_{\mathbf{e}}\mathbf{jj}\\ \mathrm{Conclusion} \end{array}$

 $m pp
ightarrow 3\ell
u$

In TGC set-up: $M_{\rm Z} - 10 \,{
m GeV} < M_{\ell_2^+,\ell_2^-} < M_{\rm Z} + 10 \,{
m GeV}$

 \rightarrow Radiative tail below the Z pole

[Biedermann, Denner, Hofer; 1708.06938]

 \rightarrow Sudakov logarithms: -25% at 1.5 TeV

 \rightarrow EW corrections are important and should be included

Mathieu PELLEN

Status of EW NLO corrections for multi-boson processes

Content

(4) $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

- → New: [Kallweit, Lindert, Pozzorini, Schönherr; 1705.00598]
 - pp $\rightarrow e^+ \mu^- \nu_e \bar{\nu}_\mu$, $e^+ e^- \nu \bar{\nu}$
 - Full NLO EW for off-shell production
 - Features WW, ZZ and Z γ production
 - Combined with NLO QCD
 - Study of photon induced contributions
 - Done in Munich/Sherpa+OpenLoops framework

[Kallweit, Lindert, Pozzorini, Schönherr; 1705.00598]

- \rightarrow Inclusion of NLO QCD
- \rightarrow Comparison of different photon PDF
- \rightarrow Various EW approximations

[Kallweit, Lindert, Pozzorini, Schönherr; 1705.00598]

 → Any di-boson computations in Sherpa+(OpenLoops/Recola): NLO EW soon public → see Steffen Schumann's talk
 → Systematic study of EW corrections possible

Content

Two new computations available for pp \rightarrow WWW:

- [Yong-Bai, Ren-You, Wen-Gan, Xiao-Zhou, Lei; 1605.00554]
 - NLO EW to the production
 - MadSpin for NWA and LO decay
 - Study of jet veto
- [Dittmaier, Huss, Knippen; 1705.03722]
 - On-shell computation
 - Study of jet veto
 - Study of photon induced contribution

 $\begin{array}{c} \mathrm{pp} \rightarrow 3\ell\nu\\ \mathrm{pp} \rightarrow 2\ell 2\nu\\ \mathbf{pp} \rightarrow \mathbf{WWW}\\ \mathrm{pp} \rightarrow \mu^+\nu_\mu \mathrm{e}^+\nu_\mathrm{e}\mathrm{jj}\\ \mathrm{Conclusion} \end{array}$

Reference	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}~{\rm [fb]}$	$\delta^{\rm QCD}$ [%]	$\delta^{\mathrm{EW}}_{\mathbf{q}\bar{\mathbf{q}}}$ [%]	$\delta^{\mathrm{EW}}_{\mathbf{q}\gamma}$ [fb]
[Yong-Bai, et al.; 1605.00554]	78.645(10)	186.42(6)	106.96(4)	-4.199(5)	18.73(2)
[Dittmaier, et al.; 1705.03722]	78.65(1)	187.04(9)	107.50	-4.16	18.77

[Dittmaier, Huss, Knippen; 1705.03722]

 \rightarrow Reasonable agreement between the two computations

[Dittmaier, Huss, Knippen; 1705.03722]

- \rightarrow Large QCD corrections
- \rightarrow Positive EW corrections for γq channels
- \rightarrow Typical Sudakov logarithms for qq channels

 $\begin{array}{c} \mathrm{pp} \rightarrow 3\ell\nu\\ \mathrm{pp} \rightarrow 2\ell 2\nu\\ \mathbf{pp} \rightarrow \mathbf{WWW}\\ \mathrm{pp} \rightarrow \mathbf{WWW}\\ \mathrm{pp} \rightarrow \mu^+\nu_\mu \mathrm{e}^+\nu_\mathrm{e}\mathrm{jj}\\ \mathrm{Conclusion} \end{array}$

 \rightarrow NLO QCD and photon-induced corrections suppressed with jet veto

$$\begin{array}{c} \mathrm{pp} \to 3\ell\nu\\ \mathrm{pp} \to 2\ell 2\nu\\ \mathrm{pp} \to WWW\\ \mathrm{pp} \to \mu^+\nu_\mu\mathrm{e}^+\nu_\mathrm{e}\mathrm{ij}\\ \mathrm{Conclusion} \end{array}$$

Content

- 2 pp $\rightarrow 2\ell 2\nu$
- \bigcirc pp \rightarrow WWW

LO contributions at $\mathcal{O}(\alpha^6)$, $\mathcal{O}(\alpha_s \alpha^5)$, and $\mathcal{O}(\alpha_s^2 \alpha^4)$

NLO contributions at $\mathcal{O}(\alpha^7)$, $\mathcal{O}(\alpha_s \alpha^6)$, $\mathcal{O}(\alpha_s^2 \alpha^5)$, and $\mathcal{O}(\alpha_s^3 \alpha^4)$

→ Order $\mathcal{O}(\alpha_{s}\alpha^{6})$ and $\mathcal{O}(\alpha_{s}^{2}\alpha^{5})$: QCD and EW corrections mix → Combined measurement for pp → $\mu^{+}\nu_{\mu}e^{+}\nu_{e}jj$

\rightarrow <u>LO fiducial cross sections:</u>

Order	$\mathcal{O}(\alpha^{6})$	$\mathcal{O}(\alpha_{s}\alpha^{5})$	$\mathcal{O}(\alpha_s^2 \alpha^4)$	Sum		
$\sigma_{ m LO}$ [fb]	1.4178(2)	0.04815(2)	0.17229(5)	1.6383(2)		
$\rightarrow \underline{\text{NLO fiducial cross sections:}} \text{ (normalised to } \sum \sigma_{\text{LO}} \text{)}$						
Order $\mathcal{O}(\alpha^7)$ $\mathcal{O}(\alpha_s \alpha^6)$ $\mathcal{O}(\alpha_s^2 \alpha^5)$ $\mathcal{O}(\alpha_s^3 \alpha^4)$ Sum						

Order	$\mathcal{O}(\alpha')$	$\mathcal{O}(\alpha_{s}\alpha^{o})$	$\mathcal{O}(\alpha_s^2 \alpha^3)$	$\mathcal{O}(\alpha_s^3 \alpha^4)$	Sum
$\delta \sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta\sigma_{\rm NLO}/\sigma_{\rm LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

[Biedermann, Denner, MP; 1708.00268]

- \rightarrow Large EW corrections at $\mathcal{O}(\alpha^7)$
- \rightarrow Negative corrections at $\mathcal{O}(\alpha_{s}\alpha^{6})$:

 $\sim 0.6\%$ difference with respect to VBS approximation (negelecting s-channel and t-/u-channel interferences)

- \rightarrow Tuned comparison against [Denner, et al.; 1209.2389] and [Jäger, et al.; 0907.0580]
- \rightarrow VBS approximation in Recola
- \rightarrow Photon PDF contribution at NLO (not included in NLO definitions):
- +1.50% with LUXqed [Manohar et al.; 1607.04266]

$$\begin{array}{c} \mathrm{pp} \rightarrow 3\ell\nu\\ \mathrm{pp} \rightarrow 2\ell 2\nu\\ \mathrm{pp} \rightarrow WWW\\ \mathrm{pp} \rightarrow \psi_{\mu} \mathbf{e}^{+}\nu_{e}\mathbf{jj}\\ \mathrm{Conclusion} \end{array}$$

[Biedermann, Denner, MP; 1708.00268]

 \rightarrow Clear hierarchy of LO contributions

 \rightarrow Different behaviour of the NLO corrections $_{(normalised to the full LO)}$

 \rightarrow Large NLO electroweak correction (!) at order $\mathcal{O}(\alpha^7)$ $\delta_{\rm EW}^{\rm NLO} = -16\%$ when normalised to the LO EW process [Biedermann, Denner, MP; 1611.02951]

• Leading behaviour dominated by:

Sudakov logarithms (bosonic part of the virtual), $\log^2 \left(\frac{Q^2}{M_{\gamma}^2}\right)$

- \rightarrow Usually in the tail of the distribution (suppressed)
- \rightarrow Usually small for total cross section
- \rightarrow Usually smaller than the QCD corrections
- Large corrections not due to VBS cuts
 - ightarrow remove $m_{
 m jj} > 500~{
 m GeV}$ and $|\Delta y_{
 m jj}| > 2.5$
 - \rightarrow relax $p_{T,j}$ and $p_{T,miss}$

$$\begin{array}{c} \mathrm{pp} \to 3\ell\nu\\ \mathrm{pp} \to 2\ell 2\nu\\ \mathrm{pp} \to WWW\\ \mathrm{pp} \to \mu^+\nu_\mu \mathrm{e}^+\nu_\mathrm{e}\mathrm{jj}\\ \mathrm{Conclusion} \end{array}$$

■ Double-pole approximation: [Dittmaier, Schwan; 1511.01698]
 ■ leading contribution of expansion about the resonance poles
 → Required two W bosons for the virtual contributions

- Agree within 1% with full calculation $_{[Biedermann, Denner, MP; 1611.02951]}$
- Dominated by factorisable corrections
 - \rightarrow Large corrections driven by the scattering process

$$\begin{array}{c} \mathrm{pp} \to 3\ell\nu\\ \mathrm{pp} \to 2\ell 2\nu\\ \mathrm{pp} \to WWW\\ \mathrm{pp} \to \mu^+\nu_\mu \mathrm{e}^+\nu_\mathrm{e}\mathrm{jj}\\ \mathrm{Conclusion} \end{array}$$

• Effective Vector Boson approximation:

- $\bullet\,$ Simplify the discussion to $W^+W^+ \to W^+W^+$
- Leading logarithm approximation [Denner, Pozzorini; hep-ph/0010201]

[Biedermann, Denner, MP; 1611.02951]

$$\sigma_{\rm LL} = \sigma_{\rm LO} \bigg[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \bigg]$$

(double EW logs, collinear single EW logs, and single logs from parameter renormalisation included) (angular-dependant logarithms omitted)

$$\begin{array}{c} \mathrm{pp} \to 3\ell\nu\\ \mathrm{pp} \to 2\ell 2\nu\\ \mathrm{pp} \to WWW\\ \mathrm{pp} \to \mu^+\nu_{\mu}\mathbf{e}^+\nu_{\mathbf{e}}\mathbf{jj}\\ \mathrm{Conclusion} \end{array}$$

[Biedermann, Denner, MP; 1611.02951]

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

• $Q=\langle m_{4\ell}
angle\sim$ 390 GeV from LO distribution

$$\delta_{\rm EW}^{\rm LL} = -16\%$$
 (!)

ightarrow Corrections 3-4 times larger than for $q ar q
ightarrow {W^+ W^-}$

- C^{ew} larger for bosons than fermions
- $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302]) NB: $\langle m_{4\ell} \rangle \sim 250 \text{ GeV}$ for $q\bar{q} \rightarrow W^+W^+$

Large NLO EW corrections: intrinsic feature of VBS at the LHC

Mathieu PELLEN

Status of EW NLO corrections for multi-boson processes

NLO EW corrections are very relevant for Run II

Recent computations for di-boson production:

- ${
 m pp}
 ightarrow 3\ell
 u$ [Biedermann, Denner, Hofer; 1708.06938]
- pp $ightarrow 2\ell 2
 u$ [Kallweit, Lindert, Pozzorini, Schönherr; 1705.00598]
- Progresses in automation of NLO EW
- All tri-boson computations known in NWA with LO decay
 - Example: $pp \rightarrow WWW$

[Yong-Bai et al., 1605.00554], [Dittmaier, Huss, Knippen; 1705.03722] (on-shell)

- \bullet New off-shell computations for $2\to 6/7$ processes
 - pp $ightarrow \mu^+
 u_\mu \mathrm{e}^+
 u_\mathrm{e} \mathrm{jj}$ [Biedermann, Denner, MP; 1611.02951, 1708.00268]

Back-up slides

BACK-UP

Mathieu PELLEN

Status of EW NLO corrections for multi-boson processes

[Biedermann, Denner, MP; 1611.02951, 1708.00268]

Predictions for $\sqrt{s} = 13$ TeV at the LHC pp $\rightarrow \mu^+ \nu_\mu e^+ \nu_e j j$

- NNPDF3.0QED [NNPDF collaboration]
- dynamical renormalisation and factorisation scale:

 $\mu_{\mathrm{ren}} = \mu_{\mathrm{fac}} = \sqrt{p_{\mathrm{T},\mathrm{j}_1} \, p_{\mathrm{T},\mathrm{j}_2}}$

• Cuts inspired by Refs. [1405.6241, 1611.02428, 1410.6315, CMS-PAS-SMP-17-004] :

 $\begin{array}{ll} \mbox{charged lepton:} & p_{{\sf T},\ell} > 20\,{\rm GeV}, & |y_\ell| < 2.5, & \Delta R_{\ell\ell} > 0.3 \\ & \mbox{jets:} & p_{{\sf T},j} > 30\,{\rm GeV}, & |y_j| < 4.5, & \Delta R_{j\ell} > 0.3 \\ & \mbox{missing energy:} & p_{{\sf T},{\rm miss}} > 40\,{\rm GeV}, \end{array}$

 \rightarrow For the two leading jet in p_{T} :

jet-jet: $m_{jj} > 500 \text{ GeV}, |\Delta y_{jj}| > 2.5.$

 \rightarrow Final state: 2 jets, missing $p_{T,i}$, and 2 same sign leptons

• anti-k_T jet algorithm [Cacciari, Salam, Soyez; 0802.1189]

R = 0.4 for jet recombination and R = 0.1 for photon recombination