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The standard cosmological model (ΛCDM)

● Concordance model

● Dark matter not detected

● Dark energy has unclear origin

● Requires an inflation period



Modified Newtonian Dynamics (MOND)

MOND is a modification of the gravitational or inertia law.

a μ(a/a
0
) = a

N
a = MOND-predicted     
     acceleration 

μ = interpolation            
     function

a
N
 = Newtonian              

       acceleration
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0
 = universal constant 

     ≈ 1.2 x 10 -10 m s-2

● Galactic rotation curves with 
no dark matter

● Relativistic extension(s) have 
problems with the speed of 
gravitational wave

● No cosmological predictions 
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The External Field Effect (EFE)

MOND is a non-linear theory  internal and external → internal and external 
accelerations can not be decoupled.

If g
in

 < g
ext

 < a
0
 

the internal motion 
depends on g

ext
 / a

0

 → internal and external the acceleration (mass) 
inferred from internal 
motion (e.g. velocity 
dispersion) depends on 
g

ext
 , hence on d

d

No ΛCDM analog!



The Radial Acceleration Relation (RAR)

Tight, universal correlation between the total and 
baryonic acceleration inside galaxies

Lelli et al. 2017

● Well fitted by 

with g
†
 ≈ a

0

● Compatible with zero 
intrinsic scatter



The Radial Acceleration Relation (RAR)

● Post-dicted in ΛCDM, with larger intrinsic scatter       
(Santos-Santos et al. 2016, Di Cintio et al. 2016, Keller & Wadsley 2017, 
Ludlow et al. 2017)

● Suggested to be a natural consequence of galaxy 
formation (Navarro et al. 2017, Keller & Wadsley 2017)

● Robust against changes in the feedback model (Ludlow et 
al. 2017)



The Radial Acceleration Relation (RAR)

Dwarf spheroidals (dSph) do not follow the RAR of larger 
galaxies.

Credits: ESA
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The ZOMG simulation suite



The ZOMG simulation suite

● 4 MW-like galaxies

● M
halo

 ~ 5 x 1011 M☉

● Zoom-in  high space → internal and external 
and time resolution

– Δt = 20 Myrt = 20 Myr

– MDM ~ 105 M☉

– M*~Mgas~104 M☉

● P-Gadget3, Planck 
ΛCDM cosmology

Credits: ZOMG collaboration



The ZOMG simulation suite

Romano-Diaz, EG, et al. 2017



The ZOMG simulation suite

Garaldi et al. 2017



Measuring accelerations

ax=G
M x(<r)

r2

high-quality sample 
 → internal and external same results

Centrals

Satellites

MDM > 107 Msun & M* > 105 Msun



RAR fitting



No special RAR for ΛCDM dSph

Garaldi et al. 
2018, PRL
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 RAR fitting: ODR (Orthogonal Distance Regression)

Traditional way to fit RAR, yields

                           g† = (1.19 ± 0.02) x 10-10 m s-2

fully compatible with observed value (Lelli et al. 2018)

                           g† = (1.20 ± 0.02) x 10-10 m s-2 
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                           g† = (1.19 ± 0.02) x 10-10 m s-2

fully compatible with observed value (Lelli et al. 2018)

                           g† = (1.20 ± 0.02) x 10-10 m s-2 

However,
the intrinsic scatter σint is computed a posteriori



 RAR fitting: Bayesian approach

Custom Gaussian likelihood in log space
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satellites 

centrals

 RAR fitting: Bayesian approach

Centrals: 
g

†
 = (1.40 ± 0.07) 

x 10-10 m s-2

σ
int

 = (0.048 ± 
0.005) dex

Satellites:
g

†
 = (1.48 ± 0.08) 

x 10-10 m s-2

σ
int

 = (0.192 ± 
0.008) dex
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No special RAR for ΛCDM dSph
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Satellites



Time evolution



g
†
 evolves linearly with a

exp

Garaldi et al. 2018, PRL



Satellites move along the RAR.

Garaldi et al. 2018, PRL

g
†
 evolves linearly with a

exp



Testing MOND and GR  
        with satellites



No secondary dependence

No difference in best-fit and scatter

Garaldi et al. 2018, PRL
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A cosmological test using satellites

ΛCDM: RAR does not  depend on the satellite-
host distance

MOND: total internal acceleration depends on 
the satellite-host distance (external field effect)

Accurate measurement of g
x
 and distances 

could tell apart ΛCDM and MOND.



Conclusions

● In ΛCDM, satellites follow the same RAR as 
bigger galaxies, but with larger scatter

● Linear evolution of g
†
 with a

exp
, σ

int
 ≈ constant

● No secondary dependence of the RAR in ΛCDM
 → internal and external a cosmological test with satellites

● Requires precise data and modelling
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Satellites 
move along 
the RAR.

Their radius 
increases, as 
well as their 
total mass.

But their 
stellar mass 
decreases.

Garaldi et al. 2018, PRL

g
†
 evolves linearly with a

exp



Vcirc vs. Vrot

Vcirc – enclosed mass
Vrot – gas kinematics



RAR vs. Double Power Law
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