Dark Matter and Mediators Investigated with Jets at the LHC

Alison Elliot Queen Mary University of London

On behalf of the ATLAS, CMS, and LHCb Collaborations

Cosmology 2018

How do we find out what Dark Matter is?

Experimental setup: the Large Hadron Collider

Detector: CMS

Detector: ATLAS

Simple models of Dark Matter at the LHC

Alison A Elliot (QMUL)

Cosmology 2018

Oct 22 – Oct 27, 2018

"Mono-X" searches

- Presence of dark matter inferred from momentum ulletimbalance in the ATLAS or CMS detector
- Key variable is the magnitude of *missing momentum* $|\mathbf{E}_{t}^{\text{miss}}|$ transverse to beam direction, known as missing energy E_{T}^{miss}
- Large *separation* $\Delta \varphi$ required between \mathbf{E}_{T}^{miss} and \mathbf{p}_{T}^{SM} to guard against mismeasurement
- Suppression of *fake* E_{T}^{miss} through a cut on any coming from other sources: $E_{T}^{\text{miss}}/\sqrt{\Sigma E}_{T}$

"Mono-X" searches

- Presence of dark matter inferred from momentum imbalance in the ATLAS or CMS detector
- Key variable is the magnitude of *missing momentum* $|\mathbf{E}_{t}^{\text{miss}}|$ transverse to beam direction, known as missing energy E_{T}^{miss}
- Large *separation* $\Delta \phi$ required between \mathbf{E}_{T}^{miss} and \mathbf{p}_{T}^{SM} to guard against mismeasurement
- Suppression of *fake* E_{T}^{miss} through a cut on any coming from other sources: $E_{\rm T}^{\rm miss}/\sqrt{\Sigma E}_{\rm T}$

Mono-jet – ATLAS

JHEP 01 (2018) 126

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event selection highlights ullet
 - Both $E_{\rm T}^{\rm miss}$ and $p_{\rm T}$ (1st jet) > 250 GeV
 - At most 4 jets ullet
 - Lepton veto (e or μ)
- Main backgrounds & estimation: ullet
 - $Z(\rightarrow vv)$ +jets: two lepton control region
 - $W(\rightarrow lv)$ +jets: one lepton control region
 - Top-quark backgrounds: one lepton • control region plus b-jets

arXiv:1603.04156Â [hep-ex]Â

Mono-jet backgrounds – ATLAS

Mono-jet results – ATLAS

- Limits are set on mediators masses up to 1.5 TeV ۲
- Strong limits can be set on low and mid-range dark ۲ matter masses

Mono-jet – CMS

Phys. Rev. D 97 (2018) 092005

Alison A Elliot (QMUL)

Cosmology 2018

Dataset: 35.9 fb⁻¹ (2015+2016)

Event selection highlights

- $E_{\rm T}^{\rm miss} > 250 {\rm ~GeV}$
- Lepton veto (e or μ) •
- Single jet or •
- Single V-jet •

Main backgrounds & estimation:

• $Z(\rightarrow vv)$ +jets: 2 CR • $W(\rightarrow lv)$ +jets: 1 CR

Mono-jet Results – CMS

- Limits are set on masses up to 1.8 TeV for vector mediators, and 1.7 for axial-vector mediators
- dark matter masses

Mono-V(hadronic) – ATLAS

arXiv:1807.11471

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event Selection highlights •
 - $E_{\rm T}^{\rm miss} > 250 \, {\rm GeV}$
 - Boosted or resolved jet substructure consistent with • a W or Z boson
- Backgrounds & estimation: ullet
 - $Z(\rightarrow vv)$ +jets, $W/Z(\rightarrow lv/ll)$ +jets ttbar – estimated through MC, normalization
 - from data

Mono-V(hadronic) results – ATLAS

Limits are set on the cross section times branching fraction of models with a Z' in the final state

Exclusion contours are set on mediator masses up to 650 GeV

Search for invisible Higgs decays – ATLAS

New result: arXiv:1809.06682

The 1, 2, and 3 bin label corresponds to the three m_i bins with [1, 1.5, 2, -] TeV boundaries, respectively

Cosmology 2018

Oct 22 – Oct 27, 2018

MET + Heavy Flavour Jets – CMS

CMS: http://cms-results.web.cern.ch/cms-results/publicresults/publications/EXO-16-049/

ATLAS: JHEP 06 (2018) 108, Eur. Phys. J. C 78 (2018) 18

- *b*-tagged jets • $E_{T}^{miss} > 200 \text{ GeV}$
- Lepton veto •
- Backgrounds & estimation:
 - W+jets, $Z(\rightarrow vv)$ +hf jets, SM ttbar ullet
 - Backgrounds fit simultaneously in CRs ●

t-quarks primarily decay to *b*-quarks

Oct 22 – Oct 27, 2018

MET + tt results – CMS

The best observed upper limit on the coupling strength for pseudoscalar mediator (left) and on signal strength (right)

Alison A Elliot (QMUL)

Cosmology 2018

Mediator searches

- If the dark matter's mediator can be produced at the LHC, then it could decay back to SM particles
- This can show up as a *resonance*, such as a Z' resonance, in the invariant mass of the decay products.
- This can also look like an *overall extra* number of events, if the new particles are not produced in a resonant way

Oct 22 – Oct 27, 2018

arXiv:1703.09127 [hep-ex]

Dijet – ATLAS

တိ

Dataset: $37 \text{ fb}^{-1} (2015 + 2016)$

- At least two jets, leading $p_T > 440 \text{ GeV}$ •
- Background is modeled using a fit function to the smoothly ulletfalling m_{ii} QCD spectrum
- Signal regions defined by rapidity variable (for balance): • $|y^*| \equiv (y_1 - y_2) / 2$
- $Z'(g_a = 0.1)$ ruled out for < 2.1 TeV obs (2.1 TeV exp)
- $Z' (g_a = 0.2)$ ruled out for < 2.9 TeV obs (3.3 TeV exp)

m_{z'} [TeV]

Dijet Trigger-object Level Analysis

Dataset: 29.3 fb⁻¹ (2015+2016)

- Trigger stream of jets reconstructed by the High-Level Trigger (no tracking or muon information)
- Backgrounds & estimation: same strategy as the full dijet analysis, dedicated calibrations needed on TLA jets
- Signal regions lower kinematic reach than the dijet analysis, searching for lighter resonances

arXiv:1804.03496 [hep-ex]

Dijet + ISR (jet or γ)

Dataset: 15.5 fb^{-1} (2015 + partial 2016)

- Triggering on an event with an energetic photon or jet to look for lower mass dijets
- Backgrounds and estimation similar to the other dijet analyses
- Signal regions separate for ISR jets and γ 's, and for the $|y^*|$ parameter
 - Limits placed on low mass mediators with a range of coupling to a Z' model ന്

ATLAS-CONF-2016-070

Updated results found: arXiv:1801.08769 [hep-ex]

|y₂₃*| < 0.6 10[€] 10^{5} 10⁴ Uncert. 0

Cosmology 2018

Dijet Combinations

Oct 22 – Oct 27, 2018

Combinations of mediator searches

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf

Axial vector mediators with **no leptonic couplings**, only mediators coupling to quarks and dark matter. •

Comparisons to direct detection

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM-summary-plots-Jul17.pdf

- *Dijet* analyses place the most stringent limits in the high mediator mass range for collider searches
- Complementarity between collider searches and direct detection searches!

Oct 22 – Oct 27, 2018

Dijet 8 TeV Vs = 8 TeV, 20.3 fb-1

Phys. Rev. D. 91 052007 (2015) Dijet √s = 13 TeV, 37.0 fb⁻¹ arXiv:1703.09127 [hep-ex] Dijet TLA √s = 13 TeV. 3.4 fb ATLAS-CONF-2016-030 Dijet + ISR √s = 13 TeV. 15.5 fb⁻ ATLAS-CONF-2016-070

$E_{T}^{miss}+X$

 $E_{T}^{miss} + \gamma \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Eur. Phys. J. C 77 (2017) 393 E_T^{miss}+jet √s = 13 TeV, 36.1 fb⁻¹ ATLAS-CONF-2017-060 E_T^{miss}+Z √s = 13 TeV, 36.1 fb⁻¹ ATLAS-CONF-2017-040

LUX

arXiv:1608.07648: arXiv:1602.03489

Bonus: SUSY dark matter searches

- There are a large variety of searches at the LHC to find dark matter. The ones presented previously are not the only ones that are competitive!
- SUSY searches for the lightest have excellent discrimination power
- Following methods similar to those in JHEP09 (2016) 175, limits can be put on charginos $\widetilde{\chi_1}^{\pm}$ and neutrilinos $\widetilde{\chi_1}^{0}$

supersymmetric particles and mediators

LHCb dark sector searches

LHCb has excellent sensitivity to very light masses or the hidden sector

- Very soft triggers \rightarrow low masses
- Forward acceptance \rightarrow boosted particles
- Excellent resolution \rightarrow narrow peaks

PRL (2018) 120 061801

• <u>Dark photons</u> • Dark Higgs • Dark bosons • Dark pions

LHCb models: dark photons

M. Williams/MI

LHCb: long lived particles with jets

- Long-lived particles with mass: 25 50 GeV
- Lifetime between 2 and 500 ps
- Integrated luminosity: 2.0 ifb at 7 and 8 TeV
- Pair-produced from SM, 125 GeV Higgs decay
- Single long-lived particle, identified by a displaced vertex with two associated jets.
- Limits set on the cross-section as a function of the mass and lifetime

Summary

- There is a wide spectrum of searches at ATLAS, CMS, and LHCb
- There are many levels of complementary dark matter searches ongoing
 - Within the detector communities
 - Within the broader LHC search community
 - In the dark matter community at large
- Once someone finds something, we can all cross-check!
- Lots of data to analyse!

Oct 22 – Oct 27, 2018

backup

Mono-photon

Eur. Phys. J. C 77, 6 (2017) 393

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event selection highlights
 - Photon p_T and $E_T^{\text{miss}} > 150 \text{ GeV}$
 - 0 or 1 jets, lepton veto (e or μ) •
- Main backgrounds & estimation:
 - $Z(\rightarrow vv)/W(\rightarrow lv)+\gamma$
 - Normalization factors from simultaneous background only fit
 - Fake photons estimated through tag and probe •
 - γ +jets extrapolated from control region in data

Mono-photon results

Inclusive signal regions:

- $E_t^{\text{miss}} > 150 \text{ GeV}$
- $E_{T}^{miss} > 300 \text{ GeV}$

Exclusive signal regions:

- $E_{T}^{\text{miss}} \in [150-225] \text{ GeV}$
- $E_{\rm T}^{\rm miss} > 225 \,\,{\rm GeV}$ $E_{\rm T}^{\rm miss} \in [225-300] \,\,{\rm GeV}$

- Limits set on mediator masses up to 1.2 TeV ullet
- Competitive limits at low and mid-range dark • experiments

matter masses compared to direct detection

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event selection highlights ullet
 - $E_{T}^{miss} > 90 \text{ GeV}$
 - B-jet veto, third lepton veto
- Main backgrounds & estimation: •
 - $ZZ(\rightarrow llvv)$
 - WZ(\rightarrow llvl), Z(\rightarrow ll,) ll non-resonant

Mono-Z(ll) results

- Two signal regions: ●
 - final states with ee
 - final states with μμ
- Limits are set on the mediator \bullet mass to about 550 GeV

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event selection highlights
 - $E_{t}^{\text{miss}} / \sqrt{\Sigma E_{T}} > 7 \text{ GeV}^{1/2}$
 - $p_T^{\gamma\gamma} > 90$ GeV and lepton veto
- Backgrounds & estimation:
 - $\gamma\gamma$ nonresonant, $H \rightarrow \gamma\gamma$, γ +jets
 - Backgrounds parameterized • with fit functions

Alison A Elliot (QMUL)

Cosmology 2018

Mono-H(bb)

Phys. Rev. Lett. 119 (2017) 181804

 \bar{q} qA

Dataset: 36.1 fb⁻¹ (2015+2016)

- Event selection highlights •
 - $E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$
- Main backgrounds
 - $Z(\rightarrow vv)$ +jets, ttbar background, W+jets

• 1 or 2 b-jets tagged and lepton veto on e or μ

Mono-H(bb) results

Oct 22 – Oct 27, 2018

Mono-H($\gamma\gamma$) results

- Signal regions:
 - $E_{\rm T}^{\rm miss} / \sqrt{\Sigma E}_{\rm T} > 7 \sqrt{\rm GeV}$ - Most sensitive:
- Exclusive signal regions used for other analyses: ullet
 - High E_{T}^{miss} : $E_{T}^{\text{miss}} / \sqrt{\Sigma E}_{T} > 5.5 \sqrt{\text{GeV}}$
 - Intermediate E_{T}^{miss} : $E_{T}^{miss} / \sqrt{\Sigma E}_{T} > 4 \sqrt{GeV}$

- Results exclude dark matter from a $Z_{\rm R}' > 850 \text{ GeV}$
- The results are competitive with direct detection limits at the lowest dark matter masses

Dilepton resonance search

JHEP 10 (2017) 182

Dataset: $36.1 \text{ fb}^{-1} (2015 + 2016)$ Events are selected by finding two same flavour, isolated leptons Backgrounds: Drell-Yan, top, and dibosons are all modeled through MC Signal regions are defined in ee, $\mu\mu$, and combined, and no excesses at: 4.1 TeV (4.0 TeV) obs (exp)

- ullet

tt/bb resonances

Dataset: 36.1 fb⁻¹ (2015+2016)

- Events are selected with one lepton, MET, and a jet, or b-tagged jets •
- Backgrounds include tt, W/Z+jets, and diboson which are estimated in MC, • and multi-jets, which are estimated in data
- The mass spectrum of the bb or tt system is searched for resonances, in the • absence of those, a Z' is excluded at 95% CL at 1 and 2.0 TeV respectively

tt: arXiv:1804.10823 [hep-ex] bb: arXiv:1805.09299 [hep-ex]

Combined HF results – ATLAS

Alison A Elliot (QMUL)

Cosmology 2018

Oct 22 – Oct 27, 2018

Dark photons

Cosmology 2018

