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Milky Way dwarfs at the forefront in indirect DM searches

Prompt GeV-TeV photon emission in DM pair annihilations, as one of the
most promising indirect detection channels:
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Recent null searches (tentative GC detection) from Fermi LAT:
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Milky Way dwarfs as Dark Matter detection Labs

I deal targets for detecting a DM signal (prompt or radiative emission
from DM particle pair annihilations or decays):
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“standard” astrophysical AN o "
sources below detection
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+ low Milky Way

foregrounds (intermediate
to high latitude locations).
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Over 50 (spectroscopically) identified,;
8 with adequate kinematic data samples,
the so-called “classical” dwarts.

Are they ideal targets for setting limits as well? For the classical dwarfs 1-0
uncertainties on J-factors often assumed within factors of 1.5 < the “astro”

uncertainty in any other indirect detection tool! Where does it come from?
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Mass models for dwarf galaxies

A stellar population as tracer of the gravitational potential (i.e. the DM
distribution) assuming dynamical equilibrium. Velocity moments of the
collision-less Boltzmann equation. Spherical symmetry for all components:

= a single Jeans equation

d g2 ) 2000, 0 M)
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Usually solved for the stellar radial pressure: p,(r) = V*(’I“)O'%T7 (r)in

terms of the 3 unknown functions:

the star density the star anisotropy the DM mass
profile profile profile
o2+ o2
20 Bulr) =1 25— M(r)
207
—00 < fi(r) <1
7 "™ radial orbits

circular orbits .
isotropy: Bx(r) =0
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Mass models for dwarf galaxies (ii)

The 3 unknowns: v, (), Bx(r)and M (7) can be map

the star surface brightness
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Mass models for dwarf galaxies (iii)

The mapping is usually done introducing parametric forms for:
Vi(7) - Plummer, King, Sersic ... profile as supported from star profiles in
other observed systems;

M (r){or DM p(r)] - from N-body simulations or DM phenomenology;

By (r) - as an arbitrary choice, since there is no real observational handle.
and performing:
- a frequentist fit of v, (r) to data on L(R);

- Bayesian inference from the stellar kinematics comparing predicted
and measured o7, . (R), addressing the large parameter space with a
MCMC sampling of a properly defined likelihood; delicate choice for
parameter priors, again arbitrary for 8.(7). Posteriors on M (r){or DM
p(r)} after marginalization over parameters. The derived posterior for .J
(and its small error bar) is what will enter as an input for particle physics
limits.

Is this a fully reliable approach?
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A recent update following this mass modelling recipe:

Stellar profiles modelled via a Plummer model (r-parameter):

L(1t) (1 T (R/Rl/2)2)_2 & vi(r) o« 3/(4R 2) (1 + (R/R1/2)2)_5/2

The dark matter profile in two alternative 2-parameter forms:

_ Ps . - Ps
NEW: NN T ) (Lt 1 /7s) Burkert: paor (L +r/rs) (L+(r/rs)?)

The stellar anisotropy profile in a rather generic form interpolating between
its value at small radii 3y and the one in the outskirts S :

_ Bo + BOO(T/TB)Q
L+ (r/79)"

B (r) (3-parameter form)

In total a setup with 7 parameters:

5: {,08,7“3,7“&5075007041/271)}

having included the heliocentric distance of the object D among the
quantities to sample, and introduced o;/9 = D/Ry/5.
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A recent update following this mass modelling recipe (ii):
A MCMC fitting procedure exploiting Bayes’ theorem:
P (5\ data) x Pg (5) Lot (data | 5)

specifying a likelihood, which, for the part connected to measured stellar
kinematics in MW satellites, reads:

2
1 1 (Elos (k) — Olos (a(k))>

N
Ekin = eEXp | — =
kgl V21 Aoios (k) (i) 2\ Aoios k) ()

(Tlos (k) is the measured value in the k angular bin, 075 (Q(g)) is the
predicted value according to the solution of the spherical Jeans equation at
the center of the bin, the error Aoy, (i) takes into account the binning)

and a set of priors:

flat

—5 < ps = logyg (ps/[GeV em™]) <5, gaussian D+ AD
priors: -5 < 7, = logyo (r5/[kpc]) < 2 priors: @iy + Aay),
—3 <75 = logy, (rg/[kpc]) <1 matching
1 < by = 200/(Fo—1) < 1,95 observations
0 < by = 20=/Pe=1) <1 95



MCMC output of estimated parameters for Draco

Burkert
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MCMUC output of estimated parameters for Sculptor:

Petac, PU & Valli, 2018
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Posterior distributions for J-factors:

Output for the quantity relevant for WIMP (velocity independent) pair

annihilations:
JE/ dQ/ dl p*(Z)
AL l.o.s.
NEFW:
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Petac, PU & Valli, 2018



Posterior distributions for J-factors (ii):

Output for the quantity relevant for WIMP (velocity independent) pair

annihilations:
Jz/ dQ/ dl p* (%
AL l.o.s.
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Geringer-Sameth et al. 2015



Posterior distributions for J-factors (ii):

Output for the quantity relevant for WIMP (velocity independent) pair

annihilations:
Jz/ dQ/ dl p* (%
AL l.o.s.
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¢  Ackermann et al. 2014
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One “pessimist” in the plot:
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what is that???



An alternative mass model approach: (PU & Valli, 2016)

Stellar surface brightness: & the stellar l.o.s. velocity dispersion:

> 2r 5 1 > 2r R?
I*(R) = /R dr \/7«2 — R2 V*(T) Ulos(R) = I*(R) /R dr \/r2 = R2 [1 — 5*<T)r_2] p*(’r)

are in a form which resembles an Abel integral transform for the pair f <> f

) st L[ dedf
" fo) > fo-atier-—; [T

Actually I.(R?) ¢+ I(r?) = v.(r). Analogously you can invert also the projected
dynamical pressure P(R?) = L.(R) o}, ,(R) and find:

M(r) = T {d—P[l —ag(r)] + ap(r) -ba(r) [ﬁ(fr) + /OO dfaﬁ(?) Hpa(r,T) ﬁ(’F)] }

o) = Af) = [ 2

,"Z

dlogag

b(r) =3 —as(r) = 0

Hp(r,7) = exp (/ dr’aﬁﬁr )>

see also: Wolf et al. 2010 + Mamon & Boué 2009.
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An alternative mass model approach (ii):

Now: model I, (R) and 0i0s(R) with a direct parametric fit on data for
these observables. E.g.: assume for the surface brightness a Plummer model:

Iy 1
mhi, (1+ R?/RE),)?

and fit the half-light radius 12, (i.e. in Ursa Minor: R, ,, >~ 0.3 kpc).

L(R?) =

13

For the line-of-sight projected
velocity dispersion in general
data are less constraining and
one can consider different
possibilities, e.g.:

11t

[ ]
o
[ ] ? ® T
97 --- >
Tt
I —— NFW fit
o] —— Burkert fit |

—— Constant fit |
Linear fit

Olos [ km/s ]

Y o0z 04 08 08 10
R [ kpc]

The Abel transforms P(r) and I, (r) are computed numerically, and then one
can perform a direct projection of what you do (not) know about 5.(r) into a
prediction for M(r), p(r) and J, and hence have a more direct assessment of
uncertainties in the predictions for dark matter signals.

14




Mass profiles in Ursa Minor as a function of constant 3, :

In practice, agnostic mass reconstruction with the inversion formula not
always give physical results. In a concrete example we need to restrain (a
posteriori) to cases in which we get M (r) > 0, dM/dr > 0 and dp/dr <0

Vo
, Y
> 1

B TR
r | kpe |

Burkert fit of the line-of-sight

projected velocity dispersion:

imposing radial orbits gives

unphysical results at low radii

NFW fit
Burkert fit

Non-parametric fit

Constant fit

ooz o4 06 o8
r | kpc ]

Span of results for 4 different

possible fits of the line-of-sight

projected velocity dispersion
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Mass profiles in Ursa Minor as a function of constant 3, :

In practice, agnostic mass reconstruction with the inversion formula not

always give physical results. In a concrete example we need to restrain (a
posteriori) to cases in which we get M (r) > 0, dM/dr > 0 and dp/dr <0

10°] 10°[
= N NFW fit
P = V =~ ' Burkert fit
10"} < —09 Av 10’ | _Non-parametric fit _
5 7 ’ o | |
E Q) C/LL i 5 Constant fit
S 10¢ i S 100
10° _ 10°| o
o 02 04 06 08 o 02 04 06 o8
r | kpc ] r | kpc ]
Burkert fit of the line-of-sight Span of results for 4 different
projected velocity dispersion: possible fits of the line-of-sight
imposing radial orbits gives projected velocity dispersion

unphysical results at low radii - |
Note: radius at which M (7)

s independent of 5, !

J
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Direct check on the existence of a2 mass estimator:

Claimed first from MCMC scans (Strigari et al. 2008) and then from the
structure of the solution of Jeans’ eq. (Wolf et al. 2010): after some algebra,

(r)ro?, [dl ]A* dlogo?, dl .
M(T)—Mﬁ*zo(r)z—ﬁ() ’ ( o + & — + 08 + 3

G N dlogr dlogr dlogr

In case 0r«(r)and B.(r)do not change rapidly with  , there is a radius 7« :

dlogl} g Qe m=V32Me e Mao(r) ¥ B
dlogr for Plummer I,) *) — JVIB=01"« *
=T, 1
N
Check the mass 01 N e results at
\ . 7 . .
differences Compared § PPN 7 fixed radius:
. o > 10_2 \ 7 \ / »
to the isotropic case “”,' NN — Iy = 0.95
assuming constant = | 3‘; v = 1.0
-3 IF
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24,
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Direct check on the existence of a2 mass estimator:

Claimed first from MCMC scans (Strigari et al. 2008) and then from the
structure of the solution of Jeans’ eq. (Wolf et al. 2010): after some algebra,
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Density profiles in Ursa Minor as a function of constant 3 ,:

In practice, Density profiles are simply obtained from the first derivative of
mass profiles; in analogy to the mass estimator, you can show that there is a
density estimator (at a different radius 7«« ), as well as a logarithmic slope

estimator, ect. ect. (Peta¢, PU & Valli, 2018 to appear)

10° —_——————— 10°
$ 1 .
j %
NFW fit | B Burkert fit
-,
- 10} MEETH I
- -
) ) '
— 10°| — 10°}
Q Q i
-1 1 1 1 -1 1 1 1 1 1 1 1 1
O 90z — 04 = 08 0.8 1075 0.2 0.4 0.6 0.8
r | kpc | r | kpc ]

Sample behaviours at small radii: 0
T —

- for 070s(R) = const., Plummer I, + 8, =0 => p(r) >~ const
r—0
- for 010s(R) = const., Plummer I, +8x = —00 => p(r) ccr™' +black

18 hOle



J-factors in Ursa Minor as a function of constant [3:

In line-of-sight integrals: J = / df / dt p* ()
A l.o.s.

we conservative set p(7) to a constant at radii smaller than the radius at
which 07.,.5.(R) can be measured (smallest radius in our data binning):
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for the 4
sample fits of

Ul.o.s.(R)
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= Coll. 2015
< apparentl
50 18.5 pp y
S not fully
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the 0
KR 00000000 uncertainty
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J-factors in Ursa Minor as a function of constant [3:

In line-of-sight integrals: J = L / dQ) / dl p3y5,(1)
AS) A l.o.s.

we conservative set p(7) to a constant at radii smaller than the radius at
which 07.,.5.(R) can be measured (smallest radius in our data binning):

2057 m— Tlos = Co + Cip VR + ¢ R+ c3p RVR |
7 — o = Co + €] R ]
20,0 MCMC with
S f o flat priors on cj
edic 5 105 coefhicients;
ICtI fi o 19.5) ;
predictions for L 193]
two possible A 68% and 95%
parametric fits < 19.0] contours for J
c0 ’ :
of 07.0.5.(R) 3 posterior
8.5 displayed
18.0/———— R

Take home message: current and projected limits from dwarfs need caution!



The case for velocity dependent WIMP annihilations

Suppose now that the DM pair annihilation cross section (0Urel) has a non-
trivial dependence on the modulus of the relative velocity |Trel| = |U1 — U2
of the two particles (1 & 2) in the pair. Introducing the factorisation:

(O-rUrel) — (ﬁrel) ) S(‘ﬁrel‘)

and the DM phase-space distribution function (PSDF) f,, (¥
gamma-ray flux takes the form:

d(I),y 1 (ﬁrel / / /
dS? dl | dvy fou( d DM re
A T N I KL B fond(7,32) S( )

= /A o / (@) (S(a)) (@) =

generalisation of the J-factor

v), the

)

If S(|Ue1|) gives an enhancement in the low |ty | limit, such as in case of
Sommerfeld enhancement, dwarfs are again an ideal target, since they are
small objects with fairly low DM velocity dispersions.

In this case, critical to infer from observations fp,\, (%, ¥) rather than p(r)

)
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PSDF under different approximations/assumptions:

Early analyses have considered a Maxwell-Boltzmann velocity distribution
with constant velocity dispersion (isothermal sphere model); in general this
approximation is too crude.

A first readjustment by considering the spherical Jeans equation (now
applied to DM rather than stars), in the isotropic limit (8p,; = 0) to find a
radially dependent velocity dispersion:

1 > dd

2 / /
oy = d —
D (T) o (7") /T T Ppwm (’r )d,’,,/

The approximate Maxwell-Boltzmann type PSDF takes the form:

ol ) = B e [0 2okt

This form is particularly handy since all velocity integrals in (S(v.e])), except
for the one on |Ue|, can be performed analytically:.
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PSDF under different approximations/assumptions (ii):
Spherical isotropic systems have a PSDF depending only on the particle
energy. Expressing this dependence in terms of the relative energy:

?}2

gE\IJ(T)—?

being the relative potential ¥(r) = &, — ®(r) a monotonic function, you
can treat ppy as a function of Wand invert the expression:

Poum (1) = /dSU fom(r,v)
to find the so-called Eddington's inversion formula:

1 d [f AV dppy
_\/§7T2dg 0 \/5—\11 dW

Some(E)

This formula can be applied to compute numerically the ergodic PSDF for
any spherical density profile; the 6-dimensional integral in (S (v.e1)) can be
reduced to a 3-dimensional integral.
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PSDF under different approximations/assumptions (iii):

More generically, the PSDF of a non-isotropic spherical system, besides &,
depends also on the magnitude of the angular momentum L. Such
distributions can be radially biased or tangentially biased, depending on the
sign of the DM anisotropy parameter Oy . Sample setups for both cases:

1) The Osz'pko‘v;Merz'tt model with increasing radial bias in the outskirts:
(A
Bom(r) = r2 4 2
in this case the PSDF still depends on a single quantity, @ = £ — L*/(2r2),
and there is an inversion formula specular to Eddington’s formula:
1 d [ 4V dppuq
fom-om(Q) = a2 d0 ) VO du

2) In models with constant negative o\, the PSDF can be factorised:

T, —2Bc
fDM—BC(gaL) — (L_O> 'gﬂc(gaLO)

For any half-integer 5., the inversion is again similar Eddington’s formula
and is particularly simple for:

Lo d?
BC — —1/2 —_— g—l/Q(\Ij?LO) — : (pDM)

212 dw?2 \ rp
24



Velocity probability distributions for the 4 models:

The 4 PSDF introduced above are constructed from the same density
profile p(r), as constrained from the same gravitational potential well W.

Nevertheless, they introduce a significant degree of uncertainty when
computing J-factors for velocity dependent WIMP annihilations. Get a
feeling of the differences at the level of 1-particle velocity probability

distributions: 02
P(v;r) =

/ dQy, fom(r,¥)  (integral over velocity direction)
pou(T)

NEFW: Burkert:

—— Eddington

— Eddington |

1.0

0.5 1

0.0 1

U/Uesc 25’ v/vesc



Prototype for the velocity dependent WIMP annihilation case:

Sommerfeld effect: the strong enhancement in (o)) for highly non-
relativistic (slow) particles subject to a long-range force. E.g.: DM particles X
annihilating through the light mediator ¢ (m, > my ); in this case the

velocity dependent pre-factor is approximately:
e sinh ( ;202;21 )

S(Vrel; §) =
( 1 5) Urel 2
cosh (—f;’zl ) — 2T 2 z (—W%"gelg)

with £ = my/ (a,m, ) and @y the long-range coupling constant.

Three distinct regimes:

1) large Vrel OF Mg Z My 1 S(vper; €3> 1) — 1
7TO(X

11) vanishing mediator mass (Coulomb regime): S(v.a1; € < 1) &

2
6 | o

111) resonant regime: S(vret ; &res = —W2n2) N5

rel

Urel

for each n €N
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J-tactor estimates from PSDFs:

While for a single parametric model the computation of the J-factor is
numerically demanding (numerical computation of the PSDF; 3 integrals to
compute (S(vre1))(r) at any radius r + its folding into the Lo.s.i. forJ) one can
make it modular and apply scaling relations, so that the computation of
posterior distributions on a full MCMC chain becomes viable:

Petac, PU & Valli, 2018

Draco:
0" 1= [ de [ atpt @) (Sea)@
f A2 l.o.s.
1022 _;
T 68% highest density
~ 21 R K °
O | probability regions from
% o ] aivi the MCMC discussed
SE v * above, assuming a PSDF
10 — NFW according to the Eddington
; Burkert isotropic model
0 — Non-parametric
10° 10" 10!

3
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J-tactor estimates from PSDFs:

While for a single parametric model the computation of the J-factor is
numerically demanding (numerical computation of the PSDF; 3 integrals to
compute (S(vre1))(r) at any radius r + its folding into the Lo.s.i. forJ) one can
make it modular and apply scaling relations, so that the computation of
posterior distributions on a full MCMC chain becomes viable:

Sculptor: Petac, PU & Valli, 2018
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J-tactor estimates from PSDFs:

Results for the 4 PSDF introduced above:
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J-tactor estimates from PSDFs:

Results for the 4 PSDF introduced above:
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J-tactor estimates from PSDFs:

Results for the 4 PSDF introduced above:
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J-factor summary results for the 8 classical dwarfs:

A significantly larger uncertainty than restraining to the approximate
“radially-dependent” Maxwell-Boltzmann PSDF:
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Conclusion:

MW dwarf satellites are an ideal target for dark matter indirect detection,
with the prompt emission of gamma-rays being a smoking-gun signature.

Null searches with the Fermi LAT have been interpreted as excluding
thermal relic WIMPs lighter than about 100 GeV.

Some caution is needed, examining critically what are the assumptions
involved in deriving such limits. The impact of an alternative mass model
approach has been discussed here.

We have also discussed here - for the first time - the impact of different
classes of phase space distribution functions on predictions for WIMP
models with velocity dependent annihilation cross sections.



