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GeV	photons:	Mul7-target	constraints

• Comparison	with	current	limits	from	other	
Galac*c	and	extragalac*c	targets	

• Mild	tension	with	GeV	excess,	but	astro	unc	on	
dSphs	bkg	and	Galac*c	DM	profile	are	
important	

• Powerful	limits	from	galaxy	group	catalogs
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Fermi-LAT	searches		 Status

• Fermi-LAT	limits	improvement	depends	on	
target	(syst.,	bkg	or	signal	limited)	

• Future	radio	telescopes:	great	improvement	
in	sensi*vi*es	[e.g.	Storm+ApJ’17]

Future

Zaharijas	(Fri)

Milky Way dwarfs at the forefront in indirect DM searches
Prompt GeV-TeV photon emission in DM pair annihilations, as one of the 
most promising indirect detection channels:
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Recent null searches (tentative GC detection) from Fermi LAT:
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Tightest limit from MW 
dwarf satellites, Fermi 
Coll. 2015. Thermal relic 
WIMPs lighter than 
~100 GeV excluded (???)

Charles et al., 2016



Milky Way dwarfs as Dark Matter detection Labs
Ideal targets for detecting a DM signal (prompt or radiative emission 
from DM particle pair annihilations or decays):

• objects with fairly large 
DM densities, located fairly 
close to the Sun (about 10 to 
200 kpc);

Over 50 (spectroscopically) identified; 
8 with adequate kinematic data samples, 
the so-called “classical” dwarfs.

• intrinsic backgrounds from 
“standard” astrophysical 
sources below detection 
sensitivities (?) 
+ low Milky Way 
foregrounds (intermediate 
to high latitude locations).

Are they ideal targets for setting limits as well? For the classical dwarfs 1-σ 
uncertainties on J-factors often assumed within factors of 1.5 ≪ the “astro” 
uncertainty in any other indirect detection tool! Where does it come from?
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Mass models for dwarf galaxies
A stellar population as tracer of the gravitational potential (i.e. the DM 
distribution) assuming dynamical equilibrium. Velocity moments of the 
collision-less Boltzmann equation. Spherical symmetry for all components:

Usually solved for the stellar radial pressure:                                      in 
terms of the 3 unknown functions:

M(r)

the star density 
profile

the star anisotropy 
profile

the DM mass 
profile

circular orbits
radial orbits

isotropy: 
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Mass models for dwarf galaxies (ii)

the star surface brightness

The 3 unknowns:         ,          and           can be mapped into 2 observables: M(r)

the l.o.s. velocity dispersion
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Universal Mass Profile for dSphs 5

Fig. 1.— Projected velocity dispersion profiles for eight bright dSphs, from Magellan/MMFS and MMT/Hectochelle data. Over-plotted are
profiles calculated from isothermal, power-law, NFW and cored halos considered as prospective “universal” dSph halos (Section 5). For each type
of halo we fit only for the anisotropy and normalization. All isothermal, NFW and cored profiles above have normalization Vmax ∼ 10 − 20 km
s−1—see Table 3. All power-law profiles have normalization M300 ∼ [0.5 − 1.5] × 107M⊙.

by α and γ. Thus the parameter Vmax sets the normal-
ization of the mass profile.

The normalization can equivalently be set by specify-
ing, rather than Vmax, the enclosed mass at some par-
ticular radius. For radius x, the enclosed mass M(x)
specifies M(r0) according to
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S08 demonstrate that for most dSphs the Jeans anal-
ysis can tightly constrain M300. Here, in addition to
M300, we shall consider the masses within two alterna-
tive radii as free parameters with which to normalize the
mass profile. Specifically, we consider the mass within
the half-light radius, M(rhalf ), and the mass within the
outermost data point of the empirical velocity dispersion
profile, M(rlast).

3.4. Markov-Chain Monte Carlo Method

In order to evaluate a given halo model, we com-
pare the projected velocity dispersion profile, σp(R),
from Equation 3 to the empirical profile, σV0

(R), dis-
played in Figure 1. For a given parameter set S ≡
{− log(1 − β), log MX , log r0, α, γ}, where MX is one of
{Vmax, M(rhalf ), M300 or M(rlast)}, we adopt uniform
priors and consider the likelihood
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(9)
where Var[σV0

(Ri)] is the square of the error associated
with the empirical dispersion.

Our mass models have five free parameters (four halo
parameters plus one anisotropy parameter). In order
to explore the large parameter space efficiently, we em-

e.g.:  Walker et al. 2009
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Mass models for dwarf galaxies (iii)
The mapping is usually done introducing parametric forms for:

         - Plummer, King, Sersic ... profile as supported from star profiles in 
other observed systems;

 - as an arbitrary choice, since there is no real observational handle.

M(r)  [or DM        ] - from N-body simulations or DM phenomenology;�(r)

and performing:
- a frequentist fit of           to data on         ;
- Bayesian inference from the stellar kinematics comparing predicted 
and measured                 , addressing the large parameter space with a 
MCMC sampling of a properly defined likelihood; delicate choice for 
parameter priors, again arbitrary for          . Posteriors on           [or DM
       ] after marginalization over parameters. The derived posterior for     
(and its small error bar) is what will enter as an input for particle physics 
limits.      
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A recent update following this mass modelling recipe:
Stellar profiles modelled via a Plummer model (1-parameter): 
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The dark matter profile in two alternative 2-parameter forms:

⇢NFW =
⇢s

(r/rs) (1 + r/rs)
2NFW: Burkert: ⇢BUR =

⇢s
(1 + r/rs) (1 + (r/rs)2)

�?(r) =
�0 + �1(r/r�)2

1 + (r/r�)2

The stellar anisotropy profile in a rather generic form interpolating between 
its value at small radii      and the one in the outskirts       :�1�0

(3-parameter form)

In total a setup with 7 parameters:
~✓ = {⇢s, rs, r� ,�0,�1,↵1/2, D}

having included the heliocentric distance of the object       among the 
quantities to sample, and introduced                             . ↵1/2 = D/R1/2

D
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A recent update following this mass modelling recipe (ii):
A MCMC fitting procedure exploiting Bayes’ theorem:
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specifying a likelihood, which, for the part connected to measured stellar 
kinematics in MW satellites, reads:

Lkin ⌘
NY

k=1

1p
2⇡��

los (k)

�
↵(k)

�
exp

2

4�1

2

 
�
los (k) � �

los

�
↵(k)

�

��
los (k)

�
↵(k)

�
!2
3

5

(              is the measured value in the k angular bin,                    is the 
predicted value according to the solution of the spherical Jeans equation at 
the center of the bin,  the error                 takes into account the binning)
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and a set of priors: 

i.e. the Baes - Van Hese proposal [59], characterized by a transition from an inner regime governed by

�

0

to an outer one set by �1, with characteristic scale r� and slope ⌘� = 2, which we for simplicity

keep constant throughout our analysis.

The adopted set of stellar Plummer model, stellar velocity dispersion anisotropy in Eq. (3.4),

and the cuspy/cored DM halo profile defined in Eq. (2.5)–(2.6), fully characterizes our study of dSph

galactic dynamics with the spherical Jeans equation. The test-statistic we define in order to perform

our analysis on the measured stellar kinematics in MW satellites reads as follows:
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The above likelihood is suitable for a binned data analysis of dSph kinematics, see for instance [15]. For

each bin k  N , with angular annulus ↵
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against spectroscopic measurements, denoted here by �los (k); in doing so, we also take into account

the observational uncertainty on the dataset binning, namely:
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where ��los (k) corresponds to the observational error stemming from the spectroscopic measurement

of the l.o.s. velocity dispersion, while �↵

(k) stands for the angular distance uncertainty associated

with the k-th bin. Equipped with Eq. (3.5), we proceed performing a Markov Chain Monte Carlo

(MCMC) analysis exploiting the stellar kinematic dataset presented in [14]3. Our fitting procedure is

carried out along the lines of Bayes’ theorem:
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where the posterior probability density function (p.d.f.) is sampled from the product of the prior prob-

ability distribution assigned to the set of model parameters ~✓, with the likelihood function reported in

Eq. (3.5), up to the overall normalization defining the so-called evidence of the model (independent on
~

✓ ). The general model under scrutiny by means of Bayesian inference is defined by seven parameters:

~

✓ = {⇢s, rs, r� ,�0,�1,↵

1/2, D} ; (3.8)

we explore the model parameter space restricting to the following set of ranges:

�5  ⇢̃s ⌘ log
10

�
⇢s/[GeV cm�3]

�  5 ,

�5  r̃s ⌘ log
10

(rs/[kpc])  2 ,

�3  r̃� ⌘ log
10

(r�/[kpc])  1 , (3.9)

1  b

0

⌘ 2�0/(�0�1)  1.95 ,

0  b1 ⌘ 2�1/(�1�1)  1.95 .

We assign flat prior distributions on the set {⇢̃s, r̃s, r̃� , b0, b1} according to the intervals reported in

Eq. (3.9), while for the heliocentric distance D and the half-light angle ↵
1/2, we assume Gaussian prior

with mean and standard deviation matching the corresponding observational information available,

i.e. D ±�D and ↵

1/2 ±�↵

1/2 respectively.
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MCMC output of estimated parameters for Draco:

Figure 2: MCMC output of the estimated parameters from NFW and Burkert fits, respectively red

and blue triangle plots, for Draco (upper panel) and Sculptor (lower panel). For the definition of the

parameters reported above we refer to Eq. (3.8) and Eq. (3.9). For each parameter, we report with

dashed lines the 16-th, 50-th, 84-th percentile on the histogram of the marginalized posterior distribu-

tion. Correlations among the seven model parameters are also shown with the corresponding 68% and

95% highest probability regions. The parameter labels are defined as follows: ⇢̃s = log
10

(⇢s/GeVcm�3),

r̃x = log
10

(rx/kpc) and bx = 2�x

/(�
x

�1) while ↵

1/2 and D are in units of arcmin and kpc respectively.
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MCMC output of estimated parameters for Sculptor:
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Posterior distributions for J-factors:

11

Petač, PU & Valli, 2018

Output for the quantity relevant for WIMP (velocity independent) pair 
annihilations:

Burkert:NFW:

Figure 6: Posterior distributions of J-factors in the three regimes of enhancement. The upper and

lower figures are respectively representing the study cases Draco and Sculptor under the assumption of

NFW (left) and Burket (right) DM density profiles. The histograms with colored 68% and 95% highest

density probability regions were obtained using Eddington’s inversion. Also, we report with gray lines

the posterior related to the Maxwell-Boltzmann scenario, while with dark (purple for NFW and blue

for Burkert) colored lines the Osipkov-Merritt model, while we show with light colored lines (pink for

NFW and cyan for Burkert) the case of �DM = �1

2

modelling.
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Posterior distributions for J-factors (ii):

12

Output for the quantity relevant for WIMP (velocity independent) pair 
annihilations:

Petač, PU & Valli, 2018

Figure 7: Left: comparison of our results for non-enhanced J-factors with previous works. Right:

results for Sommerfeld-enhanced J-factors for di↵erent PSDF under consideration in the Coulomb

regime (lower pannel) and resonant regime (upper panel).

In the most recent years, an increasing attention has been devoted to quantify the robustness of

such prediction, looping over a variety of uncertainties, mainly of astrophysical origin. The majority

of these analyses restricted to a benchmark where velocity-dependent e↵ects – pertaining to the play-

ground of Particle Physics – can be neglected. A few recent studies on the subject opened up to a

broader investigation, where velocity-dependent contributions from the DM annihilation cross-section

have been consistently taken into account in the prediction for the gamma-ray flux, see [29–31].

It is important to note that in such analyses one is generally exposed to a large set of systematics,

stemming from the lack of any precise information about the galactic phase-space distribution of DM

particles. In this work we have moved the first steps towards a data-based, comprehensive investigation

of this issue, inspecting the prediction of the gamma-ray flux from galactic DM yields in relation to

the underlying DM phase-space distribution function. While our approach can be easily applied to

any spherical (DM dominated) system, our attention here focussed on the case of the brightest Milky

Way dwarf satellites. These are primary targets for DM indirect detection, with a very good sample

of measurements on the kinematics of their faint stellar components, which trace the gravitational

potential dominated by DM. Moreover, the DM velocity probed in dwarf galactic halos falls in the

deep non-relativistic regime where possible long-range interactions – as described by the well-known

Sommerfeld e↵ect [21–25] – become of certain phenomenological relevance.

We started our investigation performing a MCMC analysis of the stellar kinematic dataset avail-

able for the eight classical dwarf spheroidals. Within the framework of the spherical Jeans analysis, we

estimated the DM halo parameters via Bayesian inference, considering both the case of cuspy (NFW)
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Posterior distributions for J-factors (ii):
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Output for the quantity relevant for WIMP (velocity independent) pair 
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are in a form which resembles an Abel integral transform for the pair           :

An alternative mass model approach:
Stellar surface brightness: & the stellar l.o.s. velocity dispersion:

f $ bf

f(x) = A[ bf(y)] =
Z 1

x

dyp
y � x

b
f(y) bf(y) = A�1[f(x)] = � 1

�

Z 1

y

dxp
x� y

df

dx
⟷

Actually                                   . Analogously you can invert also the projected 
dynamical pressure                                  and find:

M(r) =
r2

GN
bI(r)

(
�d bP

dr
[1� a�(r)] +

a�(r)

r
· b�(r)


bP (r) +

Z 1

r
dr̃

a�(r̃)

r̃
H�(r, r̃) bP (r̃)

�)

having defined: a�(r) ⌘ � �

1� �

H�(r, r̃) � exp

 Z r̃

r
dr0

a�(r0)

r0

!

see also: Wolf et al. 2010 + Mamon & Boué 2009.

b�(r) = 3� a�(r)�
d log a�
d log r

(PU & Valli, 2016)
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An alternative mass model approach (ii):
Now: model             and                with a direct parametric fit on data for 
these observables. E.g.: assume for the surface brightness a Plummer model:  

and fit the half-light radius         (i.e. in Ursa Minor:                           ).R1/2 R1/2 ' 0.3 kpc

For the line-of-sight projected 
velocity dispersion in general 
data are less constraining and 
one can consider different 
possibilities, e.g.:

I?(R) �
los

(R)

I?(R
2) =

I0
⇡R2

1/2

1

(1 +R2/R2
1/2)

2

The Abel transforms          and           are computed numerically, and then one 
can perform a direct projection of what you do (not) know about           into a 
prediction for          ,         and    , and hence have a more direct assessment of 
uncertainties in the predictions for dark matter signals.

bP (r)

M(r) �(r) J

bI?(r)
�?(r)
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Mass profiles in Ursa Minor as a function of constant β  :
In practice, agnostic mass reconstruction with the inversion formula not 
always give physical results. In a concrete example we need to restrain (a 
posteriori) to cases in which we get                  ,                      and                    :M(r) > 0 dM/dr > 0 d�/dr  0

βc<<
0

0

-∞

Burkert fit of the line-of-sight 
projected velocity dispersion: 
imposing radial orbits gives 
unphysical results at low radii

Span of results for 4 different 
possible fits of the line-of-sight 
projected velocity dispersion
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Direct check on the existence of a mass estimator:
Claimed first from MCMC scans (Strigari et al. 2008) and then from the 
structure of the solution of Jeans’ eq. (Wolf et al. 2010): after some algebra,

M(r)�M�?=0(r) = �
�?(r) r �2

r,?

GN

 
d log bI?
d log r

+

d log �2
r,?

d log r
+

d log �?

d log r
+ 3

!

In case             and           do not change rapidly with    , there is a radius      :�r,?(r) �?(r) r r⇤
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d log r

�����
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In practice, Density profiles are simply obtained from the first derivative of 
mass profiles; in analogy to the mass estimator, you can show that there is a 
density estimator (at a different radius       ), as well as a logarithmic slope 
estimator, ect. ect. (Petač, PU & Valli, 2018 to appear)   

NFW fit Burkert fit

r ! 0

⇒
hole

+ black ⇢(r) / r�1

Density profiles in Ursa Minor as a function of constant β  :?

r⇤⇤

�? = �1

  - for                              , Plummer      + �(r) ' const

r ! 0

⇒�
los

(R) = const. �? = 0I?
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J-factors in Ursa Minor as a function of constant β:
In line-of-sight integrals:

we conservative set         to a constant at radii smaller than the radius at 
which                  can be measured (smallest radius in our data binning): 

�(r)
�
l.o.s.

(R)

Span of 
predictions 
for the 4 
sample fits of   
�
l.o.s.

(R)

1-σ band for 
Ursa Minor 
in Fermi 
Coll. 2015
apparently
not fully 
catching 
the 
uncertainty

�

NFW
Burkert
σ = k
σ = k + s R

1 10 100 1000
18.0

18.5

19.0

19.5

1-β

Lo
g 1
0(
J
[G
eV

2
cm

-
5 ]
)

Fermi-LAT

isotropy circular orbits

J ⌘
Z

�⌦

d⌦

Z

l.o.s.
d` ⇢

2(~x)



J-factors in Ursa Minor as a function of constant β:
In line-of-sight integrals: J ⌘ 1
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we conservative set         to a constant at radii smaller than the radius at 
which                  can be measured (smallest radius in our data binning): 
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 Take home message: current and projected limits from dwarfs need caution!  
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The case for velocity dependent WIMP annihilations
Suppose now that the DM pair annihilation cross section             has a non-
trivial dependence on the modulus of the relative velocity                             
of the two particles (1 & 2) in the pair. Introducing the factorisation: 

21

|~vrel| = |~v1 � ~v2|
(�vrel)

(�vrel) = (�vrel) · S(|~vrel|)

and the DM phase-space distribution function (PSDF)                 , the 
gamma-ray flux takes the form: 

fDM(~x,~v)

d��

dE�
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1

4⇡

(�v
rel
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2m2

�
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d`
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1

fDM(~x,~v1)

Z
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2
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2

DM(~x) hS(vrel)i(~x) ⌘ J

generalisation of the J-factor

If                gives an enhancement in the low          limit, such as in case of  
Sommerfeld enhancement, dwarfs are again an ideal target, since they are 
small objects with fairly low DM velocity dispersions.  

S(|~vrel|) |~vrel|

In this case, critical to infer from observations                 rather than
fDM(~x,~v) �(r)



PSDF under different approximations/assumptions:
Early analyses have considered a Maxwell-Boltzmann velocity distribution 
with constant velocity dispersion (isothermal sphere model); in general this 
approximation is too crude.

22

This form is particularly handy since all velocity integrals in               , except 
for the one on         , can be performed analytically.|~vrel|

A first readjustment by considering the spherical Jeans equation (now 
applied to DM rather than stars), in the isotropic limit (               ) to find a 
radially dependent velocity dispersion:

The approximate Maxwell-Boltzmann type PSDF takes the form:

�DM = 0

�2
DM(r) =

1

⇢DM(r)

Z 1

r
dr0⇢DM(r

0)
d�

dr0

fDM-MB(r, v) =
⇢DM(r)

(2⇡�2
DM(r))

3/2
· exp

⇥
�v2/

�
2�2

DM(r)
�⇤

hS(vrel)i



PSDF under different approximations/assumptions (ii):
Spherical isotropic systems have a PSDF depending only on the particle 
energy. Expressing this dependence in terms of the relative energy:

23

This formula can be applied to compute numerically the ergodic PSDF for 
any spherical density profile; the 6-dimensional integral in                can be 
reduced to a 3-dimensional integral.

being the relative potential                                 a monotonic function, you 
can treat         as a function of     and invert the expression:

to find the so-called Eddington's inversion formula:

hS(vrel)i

E ⌘  (r)� v2

2

 (r) ⌘ �b � �(r)
⇢DM  

fDM-E(E) =
1p
8⇡2

d

dE

Z E

0

d p
E � 

d⇢DM

d 

⇢DM(r) =

Z
d3v fDM(r, v)



PSDF under different approximations/assumptions (iii):
More generically, the PSDF of a non-isotropic spherical system, besides    , 
depends also on the magnitude of the angular momentum    . Such 
distributions can be radially biased or tangentially biased, depending on the 
sign of the DM anisotropy parameter         . Sample setups for both cases:   

24

1) The Osipkov-Meritt model with increasing radial bias in the outskirts:

E
L

�DM

�DM(r) =
r2

r2 + r2a

in this case the PSDF still depends on a single quantity,                                ,  
and there is an inversion formula specular to Eddington’s formula:

Q ⌘ E � L2/(2r2a)

fDM-OM(Q) =
1p
8⇡2

d
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Z Q

0
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2) In models with constant negative        , the PSDF can be factorised:�DM

fDM��c(E , L) =
✓

L
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◆�2�c
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For any half-integer     , the inversion is again similar Eddington’s formula 
and is particularly simple for: 
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Figure 1: Velocity probability distribution for various PSDF models. The left (right) plot corresponds

to a NFW (Burkert) DM density profile; in both cases results are shown for r/rs = 0.3, with rs being

the scale radius. The velocities are normalized to the escape velocity vesc.

consistent trends in comparison with the isotropic case for both ⇢DM(r) considered. Osipkov-Merritt

model yields velocity distributions with more power at high velocities 2 which can be heuristically

understood by the fact that particles on radial orbits reach their terminal velocities at the center of

halo. On the contrary, for �DM(r) = �1/2, where the orbits are circularly biased, one finds significantly

colder central velocity distribution. This can be explained by noting that the circular velocity scales

as v
circ

/ r

(3��)/2, given a density profile with the central slope � (i.e. ⇢DM(r) / r

�� for r ⌧ rs).

The trends sketched here for single particle velocity distributions are to some extent representative

also of the scalings with the relative velocity in particle pairs, which is the relevant quantity when

addressing J-factors in presence of velocity dependent annihilation cross-sections. In the following

section we apply our analysis to observational data of dSphs and examine the implications of various

phase-space distribution models.

3 Probing DM phase-space distribution in the classical dSphs

Here we illustrate the main results of the paper. First, we report the details on the statistical analysis

carried out on the available kinematic dataset of MW classicals in order to constrain the DM halo

density profile in dSphs. Note that the first part of the this section refers explicitly to parametric

profiles. In the second part we compute the J-factor for the MW classical dwarfs in the presence of

2The secondary peak close to vesc arises in connection to the radial truncation of the profile. There are a few possibili-

ties on how to introduce it, see Appendix A.1 for details. The sharp peak in the plots appears when a smoothing function

is introduced, while it would be less pronounced for a sharp cut-o↵. Due to the nature of Sommerfeld enhancement this

truncation artifact at high velocities has however no sizable impact on our results.

– 7 –

Velocity probability distributions for the 4 models:

25

The 4 PSDF introduced above are constructed from the same density 
profile        , as constrained from the same gravitational potential well    .�(r)  

Nevertheless, they introduce a significant degree of uncertainty when 
computing  J-factors for velocity dependent WIMP annihilations. Get a 
feeling of the differences at the level of 1-particle velocity probability 
distributions:   

P(v; r) =
v2

⇢DM(r)

Z
d⌦vfDM(r,~v)

NFW: Burkert:

(integral over velocity direction)



Prototype for the velocity dependent WIMP annihilation case:
Sommerfeld effect: the strong enhancement in             for highly non-
relativistic (slow) particles subject to a long-range force. E.g.: DM particles    
annihilating through the light mediator      (                   ); in this case the 
velocity dependent pre-factor is approximately:
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Figure 4: J-factor dependence on the parameter ⇠ ⌘ m�/ (↵�m�); the bands displayed correspond to

the 68% highest density probability region obtained assuming a NFW, a Burkert or a non-parametric

halo profile in case of Draco (left panel) and Sculptor (right panel).

large values of ⇠ one recovers the standard, non-enhanced, values of J-factors. By decreasing ⇠ one

first encounters the resonance peaks, at which extremely large boost can be obtained, up to factors

of O(105), with the peak at the largest ⇠ (the one corresponding to n = 1 in Eq. (3.13)) providing

the largest enhancement. By going to even lower values of ⇠ one enters the Coulomb limit where the

enhancement saturates at factors of O(103); while the corresponding boost is notably smaller then on

the resonances, this regime requires less fine-tuning on particle physics parameters. In same plot the

three bands clearly exhibit slight di↵erences that arise among the considered density profiles. For both

Draco and Sculptor we see larger net enhancement for cuspy density profiles (such as both the NFW

and our sample non-parametric case), since they typically imply deeper potential wells and therefore

these halos host colder particle populations at their centers. At the same time, the e↵ect one finds for

a given dwarf cannot be rigidly applied to another object, since details on the enhancement depend on

the preferred region in the parameter space. In general the larger the halo concentration, the larger

the flux increase: E.g., in Draco we found that the fit in case of the NFW profile points to significantly

larger rs and lower ⇢s than for Sculptor, see Fig. 2, while for the Burkert profile the preferred regions

in parameter space are closer one to the other; correspondingly we find a smaller relative boost for in

the NFW versus Burkert cases for Draco compared to what we find for Sculptor.

As we wish to illustrate now, the choice of phase-space modelling has also a significant impact on

the extrapolated enhancements, both when considering an approximation to the isotropic case, such
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enhancement saturates at factors of O(103); while the corresponding boost is notably smaller then on
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Draco and Sculptor we see larger net enhancement for cuspy density profiles (such as both the NFW

and our sample non-parametric case), since they typically imply deeper potential wells and therefore

these halos host colder particle populations at their centers. At the same time, the e↵ect one finds for

a given dwarf cannot be rigidly applied to another object, since details on the enhancement depend on
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Figure 6: Posterior distributions of J-factors in the three regimes of enhancement. The upper and

lower figures are respectively representing the study cases Draco and Sculptor under the assumption of

NFW (left) and Burket (right) DM density profiles. The histograms with colored 68% and 95% highest

density probability regions were obtained using Eddington’s inversion. Also, we report with gray lines

the posterior related to the Maxwell-Boltzmann scenario, while with dark (purple for NFW and blue

for Burkert) colored lines the Osipkov-Merritt model, while we show with light colored lines (pink for

NFW and cyan for Burkert) the case of �DM = �1

2

modelling.
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A significantly larger uncertainty than restraining to the approximate 
“radially-dependent” Maxwell-Boltzmann PSDF:
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Figure 7: Left: comparison of our results for non-enhanced J-factors with previous works. Right:

results for Sommerfeld-enhanced J-factors for di↵erent PSDF under consideration in the Coulomb

regime (lower pannel) and resonant regime (upper panel).

In the most recent years, an increasing attention has been devoted to quantify the robustness of

such prediction, looping over a variety of uncertainties, mainly of astrophysical origin. The majority

of these analyses restricted to a benchmark where velocity-dependent e↵ects – pertaining to the play-

ground of Particle Physics – can be neglected. A few recent studies on the subject opened up to a

broader investigation, where velocity-dependent contributions from the DM annihilation cross-section

have been consistently taken into account in the prediction for the gamma-ray flux, see [29–31].

It is important to note that in such analyses one is generally exposed to a large set of systematics,

stemming from the lack of any precise information about the galactic phase-space distribution of DM

particles. In this work we have moved the first steps towards a data-based, comprehensive investigation

of this issue, inspecting the prediction of the gamma-ray flux from galactic DM yields in relation to

the underlying DM phase-space distribution function. While our approach can be easily applied to

any spherical (DM dominated) system, our attention here focussed on the case of the brightest Milky

Way dwarf satellites. These are primary targets for DM indirect detection, with a very good sample

of measurements on the kinematics of their faint stellar components, which trace the gravitational

potential dominated by DM. Moreover, the DM velocity probed in dwarf galactic halos falls in the

deep non-relativistic regime where possible long-range interactions – as described by the well-known

Sommerfeld e↵ect [21–25] – become of certain phenomenological relevance.

We started our investigation performing a MCMC analysis of the stellar kinematic dataset avail-

able for the eight classical dwarf spheroidals. Within the framework of the spherical Jeans analysis, we

estimated the DM halo parameters via Bayesian inference, considering both the case of cuspy (NFW)
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We have also discussed here - for the first time - the impact of different 
classes of phase space distribution functions on predictions for WIMP 
models with velocity dependent annihilation cross sections.

Conclusion:

MW dwarf satellites are an ideal target for dark matter indirect detection, 
with the prompt emission of gamma-rays being a smoking-gun signature.

Some caution is needed, examining critically what are the assumptions 
involved in deriving such limits. The impact of an alternative mass model 
approach has been discussed here.

Null searches with the Fermi LAT have been interpreted as excluding 
thermal relic WIMPs lighter than about 100 GeV.


