

Baryons 2022 - International Conference on the Structure of Baryons, 07.11.-11.11.2022

Jan-Hendrik Otto for the HADES collaboration, JLU Gießen 08/11/2022

HADES Physics Program

Nature Physics volume 15, pages 1040-1045 (2019)

- Explore high net-baryon region of the QCD phase diagram
- Focus on rare and penetrating probes
 - \to Virtual and real photons, that probe all different stages of heavy ion collisions: Initial NN collisions \to Fireball \to Decay of hadronic resonances
- · Address various aspects of baryon-meson coupling
- \rightarrow Heavy ion collisions at $\sqrt{s_{\text{NN}}}=2-3\,\text{GeV}$
 - HADES collision dynamics strongly differs from high energy collisions
- \rightarrow Pion and nucleon beams e.g. for reference

08/11/2022

The High Acceptance DiElectron Spectrometer

- Fixed target experiment at SIS18 (GSI, Germany)
- Magnet spectrometer
- Low mass Mini-Drift-Chambers (MDCs)
- · Time of flight walls RPC and ToF
- NEW: Upgraded RICH detector and added ECal for electron and photon detection
- Almost full azimuth angle coverage and polar angles between $18^\circ\,-\,85^\circ$
- 15-fold (25 μm , $\Delta z = 3.7 mm$) segmented target
- Accepted trigger rate 16 kHz for HIC, 50 kHz for elementary reactions

08/11/2022

The upgraded HADES RICH detector

- High electron efficiency due to $N_{\gamma} \sim$ 16 in low noise environment
- Pion suppression of $\sim 10^5$ up to $1 \, GeV/c$ momentum
 - \rightarrow Electron purity of P > 99% at low momenta; P \sim 90% at high momenta
- Recognition of conversion pairs even with opening angle $\alpha = 0^{\circ}$
- → Unprecedented precision in dielectron measurements $(S/B \sim 1)$

08/11/2022

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- \rightarrow Ar + KCl at $\sqrt{s_{NN}}$ = 2.61 GeV (PhysRevC.84.014902)
- ightarrow p + Nb and p + p at $\sqrt{s_{\scriptscriptstyle NN}} =$ 3.18 GeV (j.physletb.2012.08.004)

Pair invariant mass distribution

- Efficiency correction based on single electron simulation embedded into real data (in p, θ, ϕ)

$$\cdot < BG_{+-} >= 2k\sqrt{< FG_{++} >< FG_{--} >}$$

- BG from mixed-event technique for $M_{ee} > 400 \, MeV/c^2$
- Dielectron signal consists of virtual photons emitted throughout the whole collision
 - \rightarrow Access the contribution of the hot and dense phase by subtracting the other contributions

08/11/2022

Extracting the in-medium contribution

- Initial NN contribution
 - → Use model calculations to compensate for currently missing NN reference
 - → pp and pn simulated using GiBUU 2021 release (Phys. Rept. 512 (2012) 1-124) modeling NN = 0.54 pp + 0.46 pn (analogue to Physical Review C, 6, 102.064913)

Freeze-out hadrons

- → PLUTO simulations of leptonic decays of relevant hadrons (no ρ → in-medium contribution)
- \rightarrow Multiplicities measured in same data set
- $\cdot \,$ Strong excess beyond simulated sources

08/11/2022

Temperature of the medium

- Subtraction of hadronic cocktail and simulated initial NN contributions reveals excess radiation (Fireball radiation, ρ)
- Acceptance corrected medium radiation looks like thermal
- Mean temperature of the fireball from thermal fit
- Minor temperature dependence on centrality

p_t dependent dielectron spectra

- Perform analysis in bins of transverse pair momentum
- Broad excess over continuum in low momentum data develops into peak structure in high momentum data at $M_{ee} \sim 770 \text{ MeV}/c$ \rightarrow Select for 'in' and 'out' the medium
- High p_t data shows also an enhancement above the continuum at around $M_{ee} \sim 550 \text{ MeV}/c^2$
 - Currently under investigation

08/11/2022

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{\it NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}} = 2.42 \text{ GeV}$ (Nat. Phys. V15, p 1040–1045 (2019))
- \rightarrow Ar + KCl at $\sqrt{s_{NN}}$ = 2.61 GeV (PhysRevC.84.014902)
- ightarrow p + Nb and p + p at $\sqrt{s_{\scriptscriptstyle NN}} =$ 3.18 GeV (j.physletb.2012.08.004)

HADES Au+Au measurement

- Analysis performed similarly to presented Ag + Ag data, but data was taken before the RICH upgrade (*S*/*B* ~ 0.1 0.2 instead of *S*/*B* ~ 1)
- NN reference measured at the same energy by HADES

 \rightarrow extraction of the in-medium contribution straight forward

118

08/11/2022

HADES Au+Au measurement

- Subtraction of NN reference, η (sub-threshold production in A+A) and ω reveals in-medium contribution
- Structureless, near exponential falling spectrum (as in Ag+Ag) indicates a strong medium modification of the ρ meson required in theory to describe the data

08/11/2022

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{\it NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- \rightarrow Ar + KCl at $\sqrt{s_{NN}}$ = 2.61 GeV (PhysRevC.84.014902)
- ightarrow p + Nb and p + p at $\sqrt{s_{\scriptscriptstyle NN}} =$ 3.18 GeV (j.physletb.2012.08.004)

 Data show a clear excess in dielectron production compared to freeze-out hadrons in the intermediate mass region

- Comparison to elementary systems indicates the onset of processes not accounted for in the reference system
- Ar+KCl is not a superposition of NN collisions (differently than C+C)

08/11/2022

AuAu, ArKCl data published in Nature Physics volume 15, pages 1040-1045 (2019)

- *R*_{AA}: Dielectron yield in A+A collisions normalized to elementary reactions
- At small M_{ee} the π^0 Dalitz yield dominates \rightarrow slight excess only
- The dielectron excess observed in A+A collisions in comparison to elementary reactions clearly increases with system size

Baryons 2022

08/11/2022

- ightarrow Ag + Ag at $\sqrt{\mathrm{s_{\it NN}}}=$ 2.55 GeV
- \rightarrow Au + Au at $\sqrt{s_{NN}}$ = 2.42 GeV (Nat. Phys. V15, p 1040–1045 (2019))
- \rightarrow Ar + KCl at $\sqrt{s_{NN}}$ = 2.61 GeV (PhysRevC.84.014902)
- \rightarrow p + Nb and p + p at $\sqrt{s_{NN}}$ = 3.18 GeV (j.physletb.2012.08.004)

p + Nb and p + p at $\sqrt{s_{NN}} = 3.18$ GeV

data scaled with the nuclear modification factor R_{pA} for comparison

- High momentum data (left) shows slightly lower dielectron yield in p+Nb compared to p+p due to nuclear absorption of relevant mesons, but identical shape
 - \rightarrow Second generation particles have lowered momentum and contribute to low momentum data
- In low momentum data, p+Nb shows a strong excess below the ω pole-mass which is addressed to the ρ
- The $\omega \rightarrow e^+e^-$ peak completely vanishes (as in Ag+Ag) indicating absorption much stronger than feeding from secondary interactions

08/11/2022

- HADES offers a unique possibility to study dilepton production in the high density region of the QCD phase diagram
- The upgraded HADES spectrometer (RICH) allows for high efficient electron identification paired with high pion suppression and conversion recognition \rightarrow Unprecedented quality of dielectron spectra
- Extracting the in-medium (ρ) contribution from the dielectron yield allows to study properties of the hot and dense medium
 - \rightarrow structureless, near exponential spectrum suggests a thermal production and strong medium modification of the ρ
- The observed excess beyond elementary reactions scales with the system size
- · Momentum dependent modifications of the dielectron spectra observed

