

Hidden-charm pentaquarks as hadronic molecules

Feng-Kun Guo Institute of Theoretical Physics, CAS

Hidden-charm pentaquarks

Two Breit–Wigner resonances needed:

$$M_1 = (4380 \pm 8 \pm 29) \text{ MeV},$$

$$M_2 = (4449.8 \pm 1.7 \pm 2.5) \text{ MeV},$$

 $\Gamma_1 = (205 \pm 18 \pm 86) \text{ MeV},$ $\Gamma_2 = (39 \pm 5 \pm 19) \text{ MeV}.$

5

Hidden-charm pentaquarks

 $P_c(4312, 4440, 4457)$ from Run-2 data LHCb, PRL122(2019)222001 $\Sigma^+ \overline{D} *^0$ Weighted candidates/(2 MeV) 00 00 00 00 00 00 LHCb data otal fit background 400 P_(4440)⁺ P_c(4457) P_c(4312)⁺ 200 4250 4300 4350 4400 4450 4500 4550 4600 m_{J/wp} [MeV]

Other related talks:

- M. Pavon Valderrama, hadronic molecules in EFT, Session-II, 07 Nov.
- S. Nakamura, $P_{cs}(4338)$ pole + cusps, Session-II, 07. Nov.
- T. Burns, production + triangle singularities, Session-III, 07 Nov.
- P. G. Ortega, P_{cs} in quark models, Session-III, 07 Nov.
- L.R.Torres Rojas, Session-I, 09 Nov.
- E. Santopinto, multiquarks, Session-II, 10 Nov.

 $P_{cs}(4459, 4338)$ with strangeness

 $\Xi_h^- \rightarrow J/\psi \Lambda K^-$ LHCb, Sci.Bull. 66 (2021) 1278

2

Prehistory: Predictions of $N_{c\overline{c}}^*$ with hidden-charm

Channels $\pi N, \eta^{(\prime)} N, ..., \eta_c N, \Lambda_c \overline{D}, \Sigma_c \overline{D}$

J. Hofmann, M.F.M. Lutz, NPA 763 (2005) 90

Predicted hidden-charm ground states are well below 4 GeV

Channels $\pi N, \eta^{(\prime)}N, \dots, \eta_c N, \Lambda_c \overline{D}^{(*)}, \Sigma_c \overline{D}^{(*)}$ J.-J. Wu, R. Molina, E. Oset, B.S. Zou, PRL 105 (2010)

232001

Predicted hidden-charm states are all above 4.2 GeV

I, S)	z_R (MeV)		g _a	
1/2, 0)		$\bar{D}\Sigma_c$	$ar{D}\Lambda_c^+$	
	4269	2.85	0	
		$ar{D}^*\Sigma_c$	$ar{D}^*\Lambda_c^+$	
	4418	2.75	0	

Many more predictions followed

Survey of hidden-charm molecular pentaquarks

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

- Consider narrow charm mesons $(D_{(s)}^{(*)}, D_1, D_2, D_{s1}, D_{s2})$ and baryons $(\Lambda_c, \Sigma_c^{(*)}, \Xi_c^{(\prime)(*)}, \Omega_c^{(*)})$
- Simple model:
 - □ light vector-meson exchange
 - □ Lippman-Schwinger equation, cutoff $\Lambda \in [0.5, 1.0]$ GeV
 - Hadronic molecules appear as **bound or virtual state poles** of the *T* matrix

 \square P_c states

Survey of hidden-charm molecular pentaquarks

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

• P_{cs} states

- SU(3) charmed baryon multiplets
 - □ Sextet with ½⁺ : Σ^{++,+,0}_c, Ξ^{'+,'0}_c, Ω⁰_c
 □ Anti-triplet with ½⁺ : Λ⁺_c, Ξ^{+,0}_c
 □ Sextet with 3/2⁺ : Σ^{*++,*+,*0}_c, Ξ^{*+,*0}_c, Ω^{*0}_c

Systematics: heavy-quark spin symmetry

Heavy quark spin symmetry (HQSS) implies a hidden-charm molecular family

Consider S-wave pairs of $\Sigma_c^{(*)} \overline{D}^{(*)} [J_{\Sigma_c} = \frac{1}{2}, J_{\Sigma_c^*} = \frac{3}{2}]$:

$$J^{P} = \frac{1}{2}^{-}: \quad \Sigma_{c}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{3}{2}^{-}: \quad \Sigma_{c}^{*}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{5}{2}^{-}: \quad \Sigma_{c}^{*}\bar{D}^{*}$$

Spin of the light degrees of freedom s_{ℓ} : $s_{\ell}(D^{(*)}) = \frac{1}{2}$, $s_{\ell}(\Sigma_c^{(*)}) = 1$. Thus, $s_L = \frac{1}{2}, \frac{3}{2}$ For each isospin, 2 independent terms

$$\left\langle 1, \frac{1}{2}, \frac{1}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{1}{2} \right\rangle, \qquad \left\langle 1, \frac{1}{2}, \frac{3}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{3}{2} \right\rangle$$

Thus, the 7 pairs are in two spin multiplets: 3 with $s_L = \frac{1}{2}$ and 4 with $s_L = \frac{3}{2}$

Systematics: heavy-quark spin symmetry

• Seven P_c generally expected in this hadronic molecular model

Xiao, Nieves, Oset (2013); Liu et al. (2018, 2019); Sakai et al. (2019); . . .

• Predictions using the masses of $P_c(4440, 4457)$ as inputs

Liu et al., PRL122(2019)242001

Scenario	Molecule	J^P	B (MeV)	M (MeV)
Α	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
Α	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
A	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
Α	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	Input	4457.3
A	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
A	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 – 16.1	4510.6 - 4510.8
A	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	3.2 - 3.5	4523.3 - 4523.6
В	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 - 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{3}{2}$	Input	4440.3
B	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
В	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
В	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0

Fits to the LHCb data

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, J.A. Oller, Q. Wang, PRL124(2020)072001; JHEP08(2021)157

- Can the measured line shape be described?
- Assumed production mechanism
- Coupled channels: $\Sigma_c^{(*)}\overline{D}^{(*)}, J/\psi p, \eta_c p, (\Lambda_c \overline{D}^{(*)})$

□ Lippmann-Schwinger equation regularized with a hard cutoff

- Three fit schemes
 - □ Scheme I: contact terms
 - □ Scheme II: Scheme I + OPE + S-D counterterms
 - **\Box** Scheme III: Scheme II + $\Lambda_c \overline{D}^{(*)}$

 Λ_c

 $K^{-\prime}$

 Λ_b^0

 $\Sigma_c^{(*)}$

 $\overline{D}^{(*)}$

 $\Sigma_c^{(*)}$

p

J/ψ

Scheme I: contact term

Scheme I: contact term

- Poles of the T-matrix from fits in Scheme I
 - **D** Narrow $P_c(4380)$
 - 3 $\Sigma_c^* \overline{D}^*$ molecules with masses around 4.5 and 4.52 GeV; different mass ordering in the two solutions

			Solution A		Solution B
	Dominant channel ([MeV])	J ^P	Pole [MeV]	J ^P	Pole [MeV]
$P_{c}(4312)$	$\Sigma_c \overline{D}(4321.6)$	$\frac{1}{2}$	4314(1) – 4(1) <i>i</i>	$\frac{1}{2}$	4312(2) – 4(2) <i>i</i>
P _c (4380)	$\Sigma_c^* \overline{D}(4386.2)$	$\frac{3}{2}$	4377(1) – 7(1) <i>i</i>	$\frac{3}{2}$	4375(2) - 6(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{1}{2}$	4440(1) - 9(2) <i>i</i>	$\frac{3}{2}$	4441(3) – 5(2) <i>i</i>
<i>P_c</i> (4457)	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{3}{2}$	4458(2) – 3(1) <i>i</i>	$\frac{1}{2}$	4462(4) – 5(3) <i>i</i>
P _c	$\Sigma_c^* ar{D}^*$ (4526.7)	$\frac{1}{2}$	4498(2) – 9(3) <i>i</i>	$\frac{1}{2}$	4526(3) – 9(2) <i>i</i>
P _c	$\Sigma_c^* \overline{D}^*$ (4526.7)	$\frac{3}{2}$ -	4510(2) – 14(3) <i>i</i>	$\frac{3}{2}$	4521(2) - 12(3)i
P _c	$\Sigma_c^* ar{D}^*$ (4526.7)	$\frac{5}{2}$	4525(2) – 9(3) <i>i</i>	$\frac{5}{2}$	4501(3) – 6(4) <i>i</i>

Scheme II: contact term + OPE + S-D counterterm

• Solution A:
$$J_{P_c(4440)}^P = \frac{1}{2}$$
, $J_{P_c(4457)}^P = \frac{3}{2}$ • Solution B: $J_{P_c(4440)}^P = \frac{3}{2}$, $J_{P_c(4457)}^P = \frac{1}{2}$

Residual cutoff dependence for solution A: $\chi^2/dof = 1.01$ with $\Lambda = 1.3$ GeV

Cutoff independence only for solution B: $\chi^2/dof = 0.90$

Scheme II: contact term + OPE + S-D counterterm

Poles of 7 P_c states in Solution B
 Narrow P_c(4380)
 3 Σ^{*}_c D
^{*} molecules with masses around 4.5 and 4.52 GeV

Dominant channel ([MeV]) **Riemann sheet** Pole [MeV] $\frac{1}{2}$ $P_{c}(4312)$ $\Sigma_c \overline{D}(4321.6)$ 4313(1) - 3(1)i++++ $\frac{3}{2}$ $\Sigma_{c}^{*}\bar{D}(4386.2)$ 4376(1) - 6(2)i-+++ 3^{-} $\overline{2}$ $\Sigma_c \bar{D}^*$ (4462.1) $P_{c}(4440)$ 4441(2) - 6(2)i--++ 1 $\Sigma_c \bar{D}^*$ (4462.1) 4461(2) - 5(2)i $P_{c}(4457)$ --++ 2 $\Sigma_{c}^{*}\bar{D}^{*}(4526.7)$ 4525(4) - 9(1)i2 3 $\Sigma_{c}^{*}\bar{D}^{*}(4526.7)$ 4520(3) - 12(3)i---+ 2 5 $\Sigma_{c}^{*}\bar{D}^{*}(4526.7)$ 4500(2) - 9(6)i---+ 2

Scheme III: contact + OPE + S-D + $\Lambda_c \overline{D}^{(*)}$

- A more complete scheme
 - However, no effective constraints on $\Lambda_c \overline{D}^{(*)}$ can be derived solely from the $J/\psi p$ data

Summary

- Plenty of hidden-charm molecular pentaquarks are expected from the vector-meson exchange
- The LHCb data for $J/\psi p$ distribution can be well described in the $\Sigma_c^{(*)}\overline{D}^{(*)}$ molecular picture; suggested quantum numbers:
 - $\square \frac{1}{2}: P_c(4312, 4457); 3/2: P_c(4440)$
- States to be discovered:
 - **D** Narrow $P_c(4380)$ with $3/2^-$
 - **I** 3 $\Sigma_c^* \overline{D}^*$ molecules, but may lead to only two peaks at 4.50 and 4.52 GeV
 - □ SU(3) partners of $P_c(4312,4440,4457)$: 7 molecular states of $\Xi'_c \overline{D}^{(*)}$, $\Xi^*_c \overline{D}^{(*)}$
 - □ 1 more $\Xi_c \overline{D}^{(*)}$ molecule (in addition to $P_{cs}(4338, 4459)$)
 - Many more above 4.85 GeV

Thank you for your attention!

Additional information

• LHCb data 2019

LHCb, PRL122(2019)222001

• Color suppression might not be effective

D Example:

$$\succ$$
 Λ⁺_c → Σ⁰K⁺: color suppressed, $\mathcal{B} = (5.2 \pm 0.8) \times 10^{-4}$ PDG (2022)
 \succ Λ⁺_c → ΛK⁺: no color suppression, $\mathcal{B} = (6.1 \pm 1.2) \times 10^{-4}$

Additional information

• SU(3) multiplets of S-wave charmed baryons

Anti-triplet with
$$\frac{1}{2}^+$$
:
 $B_{\overline{3}}^{(c)} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}$

Sextet with $\frac{1}{2}^+$:

$$B_{6}^{(c)} = \begin{pmatrix} \Sigma_{c}^{++} & \frac{1}{\sqrt{2}}\Sigma_{c}^{+} & \frac{1}{\sqrt{2}}\Xi_{c}^{\prime+} \\ \frac{1}{\sqrt{2}}\Sigma_{c}^{+} & \Sigma_{c}^{0} & \frac{1}{\sqrt{2}}\Xi_{c}^{\prime0} \\ \frac{1}{\sqrt{2}}\Xi_{c}^{\prime+} & \frac{1}{\sqrt{2}}\Xi_{c}^{\prime0} & \Omega_{c}^{0} \end{pmatrix}$$

\Box Sextet with $3/2^+$:

$$B_6^{(c)*} = \begin{pmatrix} \Sigma_c^{*++} & \frac{1}{\sqrt{2}} \Sigma_c^{*+} & \frac{1}{\sqrt{2}} \Xi_c^{*+} \\ \frac{1}{\sqrt{2}} \Sigma_c^{*+} & \Sigma_c^{*0} & \frac{1}{\sqrt{2}} \Xi_c^{*0} \\ \frac{1}{\sqrt{2}} \Xi_c^{*+} & \frac{1}{\sqrt{2}} \Xi_c^{*0} & \Omega_c^{*0} \end{pmatrix}$$

17

Additional information

Background

$$f_{\text{bgd}}(E) = b_0 + b_1 E^2 + b_2 E^4 + \frac{g_r^2}{(m-E)^2 + \Gamma^2/4},$$

• Poles from Scheme I

			Solution A		Solution B
	Dominant channel ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_{c}(4312)$	$\Sigma_c \bar{D}(4321.6)$	$\frac{1}{2}$	4314(1) - 4(1)i	$\frac{1}{2}$	4312(2) - 4(2)i
P _c (4380)	$\Sigma_c^* \bar{D}(4386.2)$	$\frac{3}{2}$	4377(1) - 7(1)i	$\frac{3}{2}$	4375(2) - 6(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{1}{2}$	4440(1) - 9(2)i	$\frac{3}{2}$	4441(3) - 5(2)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{3}{2}$	4458(2) - 3(1)i	$\frac{1}{2}$	4462(4) - 5(3)i
P _c	$\Sigma_{c}^{*}\bar{D}^{*}(4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}$	4526(3) - 9(2)i
P _c	$\Sigma_{c}^{*}\bar{D}^{*}(4526.7)$	$\frac{3}{2}$	4510(2) – 14(3) <i>i</i>	$\frac{3}{2}$	4521(2) – 12(3) <i>i</i>
P _c	$\Sigma_c^* ar{D}^*$ (4526.7)	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

Interactions from light-vector meson exchange

• Positive *F* means an S-wave attraction

X.-K. Dong, FKG, B.-S. Zou, CTP73(2021)125201

System	Ι	S	Thresholds [MeV]	Exchanged particles	F
$D^{(*)} \bar{D}^{(*)} / D^{(*)} D^{(*)}$	1	0/0	(3734, 3876, 4017)	$ ho, \omega$	$-\frac{1}{2}, \frac{1}{2}/-\frac{1}{2}, -\frac{1}{2}$
	0				$\frac{3}{2}, \frac{1}{2}/\frac{3}{2}, -\frac{1}{2}$
$D_{s}^{(st)}ar{D}^{(st)}/D_{s}^{(st)}D^{(st)}$	$\frac{1}{2}$	1/1	(3836, 3977, 3979, 4121)	K^*	0/-1
$D_s^{(*)} \bar{D}_s^{(*)} / D_s^{(*)} D_s^{(*)}$	0	0/2	(3937, 4081, 4224)	ϕ	1/-1
$ar{D}^{(*)} \Lambda_c / D^{(*)} \Lambda_c$	$\frac{1}{2}$	0/0	(4154, 4295)	ω	-1/1
$ar{D}^{(st)}_{s} \Lambda_{c}/D^{(st)}_{s} \Lambda_{c}$	0	-1/1	(4255, 4399)	—	0/0
$ar{D}^{(*)}\Xi_c/D^{(*)}\Xi_c$	1	-1/-1	(4337, 4478)	$ ho,~\omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{3}{2}, -\frac{1}{2}/\frac{3}{2}, \frac{1}{2}$
$ar{D}^{(*)}_s \Xi_c/D^{(*)}_s \Xi_c$	$\frac{1}{2}$	-2/0	(4438, 4582)	ϕ	-1/1
$ar{D}^{(*)}\Sigma_{c}^{(*)}/D^{(*)}\Sigma_{c}^{(*)}$	$\frac{3}{2}$	0/0	(4321, 4385, 4462, 4527)	$ ho, \omega$	-1, -1/-1, 1
	$\frac{\tilde{1}}{2}$				2, -1/2, 1
$ar{D}_{s}^{(*)}\Sigma_{c}^{(*)}/D_{s}^{(*)}\Sigma_{c}^{(*)}$	1	-1/1	(4422, 4486, 4566, 4630)	_	0/0
$\bar{D}^{(*)} \Xi_c^{\prime(*)} / D^{(*)} \Xi_c^{\prime(*)}$	1	-1/-1	(4446, 4513, 4587, 4655)	$ ho,~\omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{\overline{3}}{2}, -\frac{\overline{1}}{2}/\frac{3}{2}, \frac{\overline{1}}{2}$
$\bar{D}_{s}^{(*)} \Xi_{c}^{\prime(*)} / D_{s}^{(*)} \Xi_{c}^{\prime(*)}$	$\frac{1}{2}$	-2/0	(4547, 4614, 4691, 4758)	ϕ	$-\frac{1}{1}$
$ar{D}^{(*)}\Omega^{(*)}_{c}/D^{(*)}\Omega^{(*)}_{c}$	$\frac{1}{2}$	-2/0	(4562, 4633, 4704, 4774)		0/0
$ar{D}_{s}^{(*)}\Omega_{c}^{(*)}/D_{s}^{(*)}\Omega_{c}^{(*)}$	$\overset{2}{0}$	-3/-1	(4664, 4734, 4807, 4878)	ϕ	-2/2
$\overline{\Lambda_c \bar{\Lambda}_c / \Lambda_c \Lambda_c}$	0	0/0	(4573)	ω	2/-2
$\Lambda_c \bar{\Xi}_c / \Lambda_c \Xi_c$	$\frac{1}{2}$	1/ - 1	(4756)	ω/K^*	1, 0/-1, -1
$\Xi_c \bar{\Xi}_c / \Xi_c \Xi_c$	1 0	0/-2	(4939)	$ ho, \omega, \phi$	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{-2}, \frac{1}{-2}, -\frac{1}{2}, -1$ $\frac{3}{2}, \frac{1}{2}, \frac{1}{-2}, \frac{1}{-2}, -1$
$\Lambda_c \bar{\Sigma}_c^{(*)} / \Lambda_c \Sigma_c^{(*)}$	1	0/0	(4740, 4805)	ω/K^*	1, 0/ - 1, - 1

19

Interactions from light-vector meson exchange

• Positive *F* means an S-wave attraction

X.-K. Dong, FKG, B.-S. Zou, CTP73(2021)125201

System	Ι	S	Thresholds [MeV]	Exchanged particles	F
$\overline{\Lambda_c \bar{\Xi}_c^{\prime(*)}} / \Lambda_c \Xi_c^{\prime(*)}$	$\frac{1}{2}$	1/ - 1	(4865, 4932)	ω	1/-1
$\Lambda_c \bar{\Omega}_c^{(*)} / \Lambda_c \Omega_c^{(*)}$	0	2/-2	(4982, 5052)	_	0/0
$\Sigma_c^{(*)} \bar{\Xi}_c / \Sigma_c^{(*)} \Xi_c$	$\frac{3}{2}$	1/-1	(4923, 4988)	$ ho,~\omega,~K^*$	-1, 1, 0/-1, -1, -2
	$\frac{\tilde{1}}{2}$				2, 1, $0/2$, -1 , -2
$\Xi_{c} \overline{\Xi}_{c}^{\prime(*)} / \Xi_{c} \Xi_{c}^{\prime(*)}$	1	0/-2	(5048, 5115)	ρ, ω, ϕ	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -1$
	0	,		,,,,,	$\frac{\frac{2}{3}}{\frac{1}{2}}, \frac{1}{\frac{1}{2}}, \frac{1}{\frac{3}{2}}, \frac{2}{-\frac{1}{2}}, \frac{2}{-1}, \frac{1}{-1}$
$\Xi_{0}\bar{\Omega}^{(*)}/\Xi_{0}\Omega^{(*)}$	1	1/-3	(5165 5235)	ϕK^*	$2^{2}, $
$\underline{-c^{3}c}_{c} / \underline{-c^{3}c}_{c}$	2	1/ 5	(5105, 5255)	φ, \mathbf{A}	2, 0/ 2, 2
$\Sigma_{c}^{(*)} \bar{\Sigma}_{c}^{(*)} / \Sigma_{c}^{(*)} \Sigma_{c}^{(*)}$	2	0/0	(4907, 4972, 5036)	$ ho, \omega$	-2, 2/-2, -2
	1				2, 2/2, -2
	0				4, 2/4, -2
$\Sigma_{c}^{(*)} \bar{\Xi}_{c}^{\prime(*)} / \Sigma_{c}^{(*)} \Xi_{c}^{\prime(*)}$	$\frac{3}{2}$	1/-1	(5032, 5097, 5100, 5164)	$ ho,~\omega,~K^*$	-1, 1, 0/-1, -1-2
	$\frac{1}{2}$				2, 1, 0/2, -1, -2
$\Sigma_c^{(*)} \bar{\Omega}_c^{(*)} / \Sigma_c^{(*)} \Omega_c^{(*)}$	Ō	2/-2	(5149, 5213, 5219, 5284)	_	0/0
$\Xi_c^{\prime(*)} \bar{\Xi}_c^{\prime(*)} / \Xi_c^{\prime(*)} \Xi_c^{\prime(*)}$	1	0/-2	(5158, 5225, 5292)	$ ho$, ω , ϕ	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -1$
	0				$\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, -1$
$\Xi_c^{\prime(*)} \bar{\Omega}_c^{(*)} / \Xi_c^{\prime(*)} \Omega_c^{(*)}$	$\frac{1}{2}$	1/-3	(5272, 5341, 5345, 5412)	ϕ , K^*	2, 0/-2, -2
$\Omega_{c}^{(*)}\bar{\Omega}_{c}^{(*)}/\Omega_{c}^{(*)}\Omega_{c}^{(*)}$	$\overset{2}{0}$	0/-4	(5390, 5461, 5532)	ϕ	4/-4

Interactions from light-vector meson exchange

• Positive *F* means an S-wave attraction

X.-K. Dong, FKG, B.-S. Zou, CTP73(2021)125201

System	I S Thresholds [MeV]		Exchanged particles	F	
$\overline{D^{(*)}ar{D}_{1,2}/D^{(*)}D_{1,2}}$	0	0/0	(4289, 4330, 4431, 4472)	$ ho$, ω	$\frac{3}{2}, \frac{1}{2}/\frac{3}{2}, -\frac{1}{2}$
	1	0/0			$-\frac{1}{2}, \frac{1}{2}/-\frac{1}{2}, -\frac{1}{2}$
$D^{(*)}\bar{D}_{s1,s2}/D^{(*)}D_{s1,s2}$	$\frac{1}{2}$	1/ - 1	(4390, 4431, 4534, 4575)	_	0/0
$D_s^{(*)} ar{D}_{1,2} / D_s^{(*)} D_{1,2}$	$\frac{\overline{1}}{2}$	-1/1	(4402, 4436, 4544, 4578)	_	0/0
$D_s^{(*)} \bar{D}_{s1,s2} / D_s^{(*)} D_{s1,s2}$	Ō	0/-2	(4503, 4537, 4647, 4681)	ϕ	1/-1
$\overline{D_{1,2} \bar{D}_{1,2} / D_{1,2} D_{1,2}}$	0	0/0	(4844, 4885, 4926)	$ ho$, ω	$\frac{3}{2}, \frac{1}{2}/\frac{3}{2}, -\frac{1}{2}$
	1				$-\frac{1}{2}, \frac{1}{2}/-\frac{1}{2}, -\frac{1}{2}$
$D_{s1,s2}\bar{D}_{1,2}/D_{s1,s2}D_{1,2}$	$\frac{1}{2}$	1/1	(4957, 4991, 4998, 5032)		0/0
$D_{s1,s2}\bar{D}_{s1,s2}/D_{s1,s2}D_{s1,s2}$	$\tilde{0}$	0/-2	(5070, 5104, 5138)	ϕ	1/1
$\overline{\Lambda_c ar{D}_{1,2} / \Lambda_c D_{1,2}}$	$\frac{1}{2}$	0/0	(4708, 4750)	ω	-1/1
$\Lambda_c \bar{D}_{s1,s2} / \Lambda_c D_{s1,s2}$	0	-1/1	(4822, 4856)	—	0/0
$\Xi_c ar{D}_{1,2}/\Xi_c D_{1,2}$	1	-1/-1	(4891, 4932)	$ ho, \omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{3}{2}, -\frac{1}{2}/\frac{3}{2}, \frac{1}{2}$
$\Xi_c \bar{D}_{s1,s2} / \Xi_c D_{s1,s2}$	$\frac{1}{2}$	-2/0	(5005, 5039)	ϕ	-1/1
$\overline{\Sigma_{c}^{(*)}ar{D}_{1,2}/\Sigma_{c}^{(*)}D_{1,2}}$	$\frac{3}{2}$	0/0	(4876, 4917, 4940, 4981)	$ ho,\omega$	-1, -1/-1, 1
	$\frac{\overline{1}}{2}$				2, -1/2, 1
$\Sigma_{c}^{(*)} \bar{D}_{s1,s2} / \Sigma_{c}^{(*)} D_{s1,s2}$	$\frac{1}{1}$	1/ - 1	(4989, 5023, 5053, 5087)	_	0/0
$\Xi_c^{\prime(*)} ar{D}_{1,2}/\Xi_c^{\prime(*)} D_{1,2}$	1	-1/-1	(5001, 5042, 5068, 5109)	$ ho, \omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{\overline{3}}{2}, -\frac{\overline{1}}{2}/\frac{3}{2}, \frac{\overline{1}}{2}$
$\Xi_c^{\prime(*)} \bar{D}_{s1,s2} / \Xi_c^{\prime(*)} D_{s1,s2}$	$\frac{1}{2}$	- 2/0	(5114, 5148, 5181, 5215)	ϕ	-1/1
$\Omega_c^{(*)} \bar{D}_{1,2} / \Omega_c^{(*)} D_{1,2}$	$\frac{\overline{1}}{2}$	-2/-2	(5117, 5158, 5188, 5229)	—	0/0
$\Omega_{c}^{(*)} \bar{D}_{s1,s2} / \Omega_{c}^{(*)} D_{s1,s2}$	$\tilde{0}$	-3/-1	(5230, 5264, 5301, 5335)	ϕ	-2/2