Contribution ID: 26

Hidden-charm $P_{\psi s}^{\Lambda}$ pentaquarks in a constituent quark model calculation

The discovery of pentaquark states by the LHCb [1] revolutionized Hadron Physics, expanding the usual qqq structure to four quarks and an antiquark. The first observations, detected in the $J/\psi p$ mass spectrum, showed two resonances, dubbed $P_c(4380)^+$ and $P_c(4450)^+$, close to $D^{(*)}N$ thresholds, which suggested a baryon-meson molecular nature in contrast to a compact pentaquark core. The existence of such pentaquarks, with minimum $\bar{c}cuud$ quark content, anticipated similar hidden-charm structures with strangeness, i.e., with $\bar{c}cuds$, which were recently confirmed with the discovery of the so-called $P_{cs}(4459)^0$ [2], now called $P_{\psi s}^{\Lambda}(4459)^0$.

In this work, we provide a theoretical description of the $P_{\psi s}^{\Lambda}(4459)^0$ and $P_{\psi s}^{\Lambda}(4338)$ resonances as $\bar{D}^{(*)} \Xi_c^{(\prime)(*)}$ molecular states in the framework of a constituent quark model that has been extensively used to describe hadron phenomenology [3], in particular exotic states in the baryon spectrum as meson-baryon molecules [4,5]. Such $P_{\psi s}^{\Lambda}$ states are found in the $J^P = \frac{1}{2}^-$ channel with masses and widths compatible with the experimental measurements in a coupled-channels calculation with all the parameters constrained from previous studies. Other candidates are explored in the $J^P = \frac{3}{2}^-$ and $\frac{5}{2}^-$ channels. Additionally, $P_{\psi ss}^N$ pentaquark states are predicted as $\bar{D}_s \Xi_c$ molecules.

[1] R. Aaij et al. [LHCb], Phys. Rev. Lett. 115 (2015), 072001.

[2] R. Aaij et al. [LHCb], Sci. Bull. 66 (2021),1278-1287.

[3] J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31 (2005), 481.

[4] P. G. Ortega, D. R. Entem and F. Fernandez, Phys. Lett. B 718 (2013), 1381-1384.

[5] P. G. Ortega, D. R. Entem and F. Fernández, Phys. Lett. B 764 (2017), 207-211.

Author: Dr G. ORTEGA, Pablo (University of Salamanca)

Co-authors: RODRIGUEZ ENTEM, David (University of Salamanca); FERNANDEZ, Francisco (Universidad de Salamanca)

Presenter: Dr G. ORTEGA, Pablo (University of Salamanca)

Track Classification: Hadron-hadron interactions