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3H. Schindler et al., NIM-A 624 (2010) 1, 78-84.

Introduction

𝜇

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒

𝐻𝑉 (−)

𝐻𝑉 (+)

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑝𝑙𝑎𝑛𝑒

Using Garfield++, electron avalanches can be simulated 

microscopically on a collision-by-collision basis, where 

we consider the proportional regime of amplification.

Our goal is to “efficiently” calculate the signal response, 

including the contribution from resistive materials.
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Grid-based avalanche calculation



The simulation approach for MRPCs relies heavily on a developed method that provide a one-dimensional 

description of avalanche dynamics using a grid-based approach.
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Grid-based avalanche calculation

Garfield++ webpage example: https://garfieldpp.web.cern.ch/garfieldpp/examples/rpc/

https://garfieldpp.web.cern.ch/garfieldpp/examples/rpc/


The gas volume is subdivided into a 3D grid, with electrons snapped to the nodes and propagated along the drift 

direction. The avalanche development is modeled using swarm parameters and the Legler model. 

To approximate space-charge suppression, growth is capped at 1.6*10⁷ electrons.

Grid-based avalanche calculation

6

W. Legler, Z. Naturforschung. 16a (1961) 253.

C. Lippmann, W. Riegler, NIM-A 517 (2004) 54–76.

See presentation of Supratik Mukhopadhyay.

Space-charge cutoff

RD51–NOTE-2011-005, by Paulo Fonte.

RD-51 Open Lectures by Filippo Resnati. 

See presentation of D. Bošnjaković.

https://indico.cern.ch/event/1273825/contributions/5444158/
Danko%20Bošnjaković


To accurately represent the early fluctuations' impact on the induced charge distribution, microscopic tracking in 

Garfield++ is used. After a set time (~ 50 - 100 electrons), the method switches to the grid model, forming a 

'mixed method' approach.

Grid-based avalanche calculation

7

n

Microscopic Grid
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Ramo-Shockley theorem



The Ramo-Shockley theorem allows the current induced by an 

externally impressed charge density on any electrode to be calculated 

using a so-called weighting potential ψ(x).

Ramo-Shockley theorem

9
S. Ramo, PROC. IRE 27, 584 (1939).

W. Shockley, Journal of Applied Physics. 9 (10): 635 (1938).

This static ψ(𝐱) can be calculated for a grounded electrode using the 

following step: 

• Remove the drifting charges 

• Put the electrode at potential Vw

• Grounding all other electrodes



Let us consider a Townsend avalanche inside the amplification gap of a parallel plate-type detector that induces 

a signal on the anode plane.
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Signal in a non-resistive Micromegas

𝐴𝑟/𝐶𝑂2

93/7%
∆𝑉 = 510 V
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Ramo-Shockley theorem extension 
for conducting media



In detectors with resistive elements, signal timing depends on both charge 

movement in the drift medium and the time-dependent reaction of 

resistive materials.

Ramo-Shockley theorem extension for conducting media

12

E. Gatti et al., Nucl. Instrum. Meth. in Physics Research 193 (1982) 651.

W. Riegler, Nucl. Instrum. Meth. A 535 (2004), 287-293.

W. Riegler, Nucl. Instrum. Meth. A 940 (2019) 453-461.

The dynamic weigting potential ψi(𝐱, t) can be calculated: 

• Remove the drifting charges 

• Put the electrode at potential Vw at time t = 0

• Grounding all other electrodes



The time-dependent weighting potential is comprised of a static 

prompt and a dynamic delayed component:
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𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝

𝑔𝑎𝑠 𝑔𝑎𝑝 𝑅 𝑙𝑎𝑦𝑒𝑟

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟

𝑐𝑎𝑡ℎ𝑜𝑑𝑒

V

Direct induction Reaction from 

resistive material

The current induced by a point charge q is given by: 

where                           

.  

Ramo-Shockley theorem extension for 
conducting media

𝑔𝑎𝑠 𝑔𝑎𝑝 𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟

V
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Weighting potentials of (M)RPCs



A charge q moves at a constant velocity through the gas gap before reaching the bulk resistive layer that 

separates it from the anode.
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Delayed component of the signal

The dynamics is governed by the time constant:

𝜏 = 𝑇/2

W. Riegler, NIM-A 535 (2004) 287–293

Here we took 𝝐𝒓 = 𝟏.



Given the typically high volume resistivities of O(10⁹ - 10¹²) Ω⋅cm in RPCs, the delayed component is negligible.

16

Delayed component of the signal

The dynamics is governed by the time constant:

RPC regime

Only prompt!

W. Riegler, NIM-A 535 (2004) 287–293

Here we took 𝝐𝒓 = 𝟏.
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Weighting potentials of (M)RPCs

The analytical expression for the prompt weighting potential of rectangular electrodes within an N-layer 

geometry has been implemented in the new 'ComponentParallelPlate' class in Garfield++.

𝑤𝑥

The function fmn(k,y) can be found in W. Riegler JINST 11 (2016) 11, P11002.



An example simulation of a 6-gap MRPC

18
Measurements taken from M. Shao et al., NIM-A 492 (2002) 344–350.

Simulation performed for iC4H10/SF6/C2H2F4 (5/5/90%).

𝜋 (7 𝐺𝑒𝑉/𝑐)
3.0 𝑥 3.1 𝑐𝑚2

1.2 𝑚𝑚

250 µ𝑚

0.7 𝑚𝑚

Using the mixed-method approach, an event can be 

simulated in less then 0.3 s. 

D. Stocco is extending this approach to the 2D model 

of C Lippmann. https://indi.to/c9hfk

https://indi.to/c9hfk


What about the resistive HV electrode?

19

HV layer

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟 (0.3 MΩ/□)

𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝

𝜋

The dynamic weighting potential was calculated using COMSOL and then applied in Garfield++ for induced signal 

calculations. For graphite layers with O(100 kΩ/□), the signal induced by electrons remains unaffected.

10 kΩ/□

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟 (0.3 MΩ/□)

10 kΩ/□

COMSOL Multiphysics: https://www.comsol.ch

Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459.

Preliminary

𝑧

𝑦

https://www.comsol.ch/


An (incomplete) list of resistive detectors:

• Multi-gap Resistive Plate Chambers (MRPC)

• Surface Resistive Plate Counter (sRPC)

• MicroCAT’s two-dimensional interpolating readout 

• μ-Resistive WELL

• μ-Resistive plate WELL

• Small-pad resistive Micromegas

• Resistive-strip bulk Micromegas

• Resistive PICOSEC Micromegas

• Un-depleted-silicon Sensors

• Resistive Silicon Detectors (RSD)

• 4D Diamond Sensor

Using the finite element method, dynamic weighting 

potentials can be numerically obtained for a wide range 

of resistive detectors.
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Garfield++ simulations of resistive particle detectors

RPC

MPGD

Solid-state

Resistive-strip bulk Micromegas

T. Alexopoulos, et al., Nucl. Instrum. Meth. A 640 (2011) 110.

M. Byszewski and J. Wotschack, JINST 7 C02060 (2011).

pillar

mesh
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Garfield++ simulations of resistive particle detectors

RPC

MPGD

Solid-state

D. Janssens, Ph.D. thesis (2024), https://cds.cern.ch/record/2890572.

Using the finite element method, dynamic weighting 

potentials can be numerically obtained for a wide range 

of resistive detectors.

Leading strip Next-to-leading strip

https://cds.cern.ch/record/2890572


Conclusion
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Using Garfield++, the MRPC response can be calculated from avalanche development to signal formation.

• For more efficient large-scale avalanche calculations, a mixed method is used: starting with microscopic 

electron tracking, followed by the Legler model.

• Garfield++ and COMSOL are used to model signal formation in detectors with resistive elements, applying an 

extended Ramo-Shockley theorem. A scan of different graphite layer surface resistivities showed results 

consistent with literature, confirming the prompt component's dominance.

• This approach applies to complex detector layouts in resistive gaseous detectors (RPCs, resistive MPGDs) 

and solid-state detectors.

Outlook:

• The grid-based method can be adapted for avalanche descriptions in SiPMs.

• A combined method will be implemented, using "super charges" that can be tracked microscopically.
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Thank you for your attention!


