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INTRODUCTION

Relevance of gas choice and ion mobility in gaseous radiation detectors...
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Basic concepts — Diffusion of ions in gases

Let us consider a group of ions moving in a gaseous medium. In the absence of a temperature gradient, electric
or magnetic field and low charge density..

Microscopically ... * lons will move from high concentration regions to low
concentration regions;

Rate is proportional to concentration gradient (Vn);

Continues until all ions are
Q J =—=DbVn iformly di d in neutral
O T @ J—ion flux unirormily aispersed in neutral gas.
O | O O D —ion diffusion ‘
C)t _________ )O O J = vn (where v is the velocity of the diffusive flow)
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INTRODUCTION

Let us consider a group of ions moving in a gaseous medium under the influence of a weak and uniform electric field...

Basic concepts — Effect of electric field on ion motion
lons will flow along the field lines
so that the ion motion is superimposed on

Microscopically ...
the diffuse motion.
The average speed of the ions becomes

proportional to the electric field and diffusion

I +
v
% O @ O
l l E O ,'" Q )
O\ """""" ;.O O is isotropic (assuming that a steady state is
reached).
Mobility

Drift velocity Diffusion Nernst-Townsend «  Proportional to the
e =3/2k,T relationship diffusion coefficient
— m B
vy = KE D.=D K = (eD/ ) |:> * Inversely
T= UL kgT .
proportional to gas
€,— Average energy .
D; (D) - Diffusion coefficients e — electric charge temperature
kg—Boltzmann constant .

T —Temperature

E- Electric Field
K-lon Mobility
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Basic concepts — Effect of gas density
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Let us consider a group of ions moving in a gaseous medium under the influence of a weak and uniform electric field...

Microscopically ...

0SF000

* Increase in the electric field strength
will increase the drift velocity;
Increase in the gas density will...

2

Mean free path
between collisions

Q\"("j“:- O 1

A=—
oN

Collision frequency

v = voN

Energy loss per

collision
2mM

Ae=——— ¢
© (m+M)2£‘

Energy gained
between collisions

g = qEA

lon motion will therefore depend on E/N;

Mobility will be independent of E/N only if [>

energy acquired is neglegible if compared
to the thermal energy;

Reduced Mobility

K,= KN/N,

N — Gas number density

Ny—Loschmidt Number
7
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Models for lon-neutral interaction

In addition to the diffusive forces and effects of external electric field...

If the ion-neutral repulsive forces are

Models for lon-Neutral Interactions

negligible when compared to the
polarization effect the interaction
between the ion and the neutral is a «
function of the polarizability of the
neutral atom/molecule.

Polarization
Limit

Elastic Limit -

!

Langevin Blanc’s Law
Polarization L|m|t1 1 ) (
1 2 K0 x K0 1 K0 2
K,=13.88(— e ¢

(XIJ. f1,f,— molar fraction of gas 1, 2
Kog1, Kogz —ion mobility in
the gas 1 and gas 2

Langevin Elastic Limit
Ko = (3e/16N)[21/ (kT r)]" 2 [1/(nd? )]

lon
mean
energy

W —reduced mass
o, — neutral polarizability

d — sum of radii of the ion and neutral molecule

G GRAN SASSO
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The collision between an ion and
a gas molecule is treated as a
rigid sphere collision in which the
ion scattering is isotropic (in the
center of mass coordinate system).

!

— 1mv2 = 1mvT2 + 1mvd2 + ledz
2 2 2 2
Thermal Energy Random motion
energy gained by of the neutral

the E field gas molecules
gained from
the field
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INTRODUCTION -

Processes that affect ion mobility

Since the amount of time needed for a certain ion to travel a known distance depends on its mass, it is only natural that ion
mobility is dependent on the ion formed. Sometimes it leads to over simplifications that result in incomplete /inaccurate

evaluation of the true mobility.

Chemicqll reactions Reaction time lon concentration Reaction is complete or not
1 [Rg™*] t and can be used estimate how
RY+R, > Rf, mm) 1= =) _ e T —>
g g g2 k[Rg] [Rg*1o much each ion species affects
k — reaction constant . ope
the overall ion mobility.

Rate constant tells us Main contributions come

. P from:

how fast a reaction occurs. [Rg] =N

P Atm . e
Depends on: Resonant charge Cluster formation Impurities
* Temperature _ g 19 _3 transfer * Cluster size . * Water is a polar
e Drift velocity of ions N =245X10"cm * Slows down ions qffects. the drift molecule

* Increasing of the ions * Tends to form
Arrhenius equation impact with * Depend on the heavy clusters
Eq pressure pressure

k = Ae RT

Ea — activation energy
A — frequency factor




New Horizons in Time Projection Cambers — 5th to 9th October 2020, Santiago de Compostela (Spain)
G GRAN SASSO

. - . .. SCIENCE INSTITUTE
INFN Istituto Nazionale di Fisica Nucleare STty
I SCHOOL OF ADVANCED STUDIES

INTRODUCTION

Processes that affect ion mobility — Cluster Formation

@ O The trend to form clusters can be inferred from van’t Hoff diagrams:
* Clusters are composed
by a central ion with ‘ van’t Hoff equation: Reagents Endothermic Reaction

one or more neutral AH  AS
atoms or molecules, InK,y = ——=+—
RT R
* bound together by
charge induced -
(]
dipoles. Note: £
* Endothermic reactions display flll‘t)fr:pﬁgﬁ ASR
Binding energy of Clusters negative slope
‘ * Exothermic reactions display Products
iti |
lonic and Charge positive slope
Van der T (1K)

covalente induced Waals
bonds dipoles

Taken from Wikipedia

10
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* + +
Processes that affect ion mobility — Cluster Formation Example - CO; €07 (€02)n-1 +2C0; & €05 (CO)y + CO;

@ |
|
‘ . : K. Hiraoka ef al. 1988
° 10 ' r p————y - v . v . v v
Clusters are ?ompc.)sed | 1COZ(€O,) COF(CO,)
by a central ion with 10| ' 2\-r22 €03 (€0,
O 3

[
one or more neutral ! 4 |C03(COz),
Pressure ' ‘
300 K :
[

K (Torr ')

atoms or molecules, o' 54 CO; (CO,)s
* bound together by ,JO):
. 16 6 {C03 (CO3)6
charge induced ¥ 6{ COF(CO,) CO5(C0,), COS(CO,)4
dipoles. I — e . —
P CoS 2 3 4 5 6 7
> {000/ T(K)
Binding energy of Clusters Temperature
‘ * Cluster formation in CO, is an exothermic reaction (likely to

lonic and Charge Van der take place)
covalente induced Waals ,
bonds cfi5eee * van't Hoff show that clusters of CO, can be formed even at

low pressure
* Larger clusters can be formed at low temperature and high

pressure *Measurements taken at low pressure up to 3 Torr 1
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Effect of water content

I N T R 0 D U CT I 0 N K constant K decreases
<« 50 ppm —
0.12 4 (@) 1 TMP
Processes that affect ion mobility — Water Content | Low E/N DMMP
As seen before, cluster formation is highly probable even at low pressure, water 0084 20 Td -
molecules, being polar tend to form clusters. I DIMP g
peee |14
0.04 A TPP
DBBP
- TBP
Low E/N favour the formation 4 af = v
of water clusters. =) 0 b) :
. . 0.30 1 . i TMP
High E/N favour declustering™ K | High E/N ! DMMP
Clusterin 80 Td !
Declusiering E g 0204 : %};}AP 3
: ; - oo |12
lon heating i DEFF 114
0.10 1 : TPP
. ot ! | - m
Dissociation of hydrates 4
Ey ] 0- .

G. Eiceman et al. 2013

*Declustering reduction on the mass and size of a cluster ion.

1 100 10000

Moisture (ppm,,)

This work hints: The effect of water content on ion
mobility should be less pronounced

with increasing molecular weight of

the gas. 12
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Processes that affect ion mobility — Water Content
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A. Deisting et al. 2018

T ] “';‘ m Ar-CO, (90-10) m - ® 950 <H,0 <1050 “E' = ® 2030 <H,0 <2080
- . N = Ne-CO, (90-10) S 064 _— A a25<HO< 455 O 0371 > A B40<HO< 760
- - > A ¢ 190<H0< 200 > a35F ¢ 390 <H,0 < 430
- S 0.62 + 69<H,0< 74 o = + 295<H,0< 335
- é - L] -f-f- 0.35—~
- 0.6 :_ 0.34 + +
- i } 0.33F
- 0.58 — 1 -
= i 0.32|
- “oe | -
— - O [ ] 0.56 » 0.31 —
- me i -
| I T T S N T T S TR NN S TR T SR N TR S SR SR NN e b b by by U by e Ly I I T S TN T NN TN ST SR SR A ST SR ST SN NN SR S S S |
0 500 1000 1500 2000 200 300 400 500 600 700 800 900 500 550 600 650 700
H,O content [ppm] E, [Viem] E, [V/em]

Apparent Declustering

: o effect with
ion mobility content E/N

influence on K

(a) Ar-CO; (90-10)

(b) Ne-CO3 (90-10)

» Significant impact on ion mobility.
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Techniques to Identify lons
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Transport properties of ions in gases have been studied experimentally since shortly after the discovery of X-rays
in 1895 and theoretically since 1903. Still in most data ions are being incorrectly identified.

The identification of the nature of ions can be made using two different approaches: Drifting ions can undergo

chemical reactions changing
their identities.

_
spectrometry

C
O
=
O
O
(.
=
C
()]
9O
C
o
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Techniques to Identify lons — Mass Spectrometry

How does it work?

|

ION SQURCE REGULATOR
AND SUPPLY

0 28cm
[

SCALE

h |
— ] PULSE GENERATOR

ION SOURCE

DRIVE SCREW T——
LINEAR MOTION
BEARINGS

TRIGGER PULSE
— TG TIME -0F = FLIGHT

AWALYZER

VALVE gl

)

ISOLATION .| SERVD GAS INLET
VALVE oNE OF TEN Tx?’zg:ﬁuﬂ: LEAD THROUGH
* Combines the ion drift chamber with a mass spectrometer K[ | “RoRTs FoR Q ewmewnoos
THROTTLE CAPACITANCE MANCMETER

lons are formed
by electron
impact

Cloud of ions drift

along the
lons enter a

differentially Mass
pumped region identified
where they are using a mass

selected by mass; spectrometer;

A differencing

G EEH géSmSIOTIT - technique is used to
- STITU determine the ion drift
I SCHOOL OF ADVAMCED STUDIES veloci.'.y

+ |'_] ]
~ ELECTRON - IMPACT
_ " 10N SOURCE
= - -
I e
- - — DRIFT TUBE
2 S, N
a_ g
E g
IS
&
S - ~DRIFT FIELD GUARD RINGS
4
i ¢
Lj |l ———RF QUADRUPOLE SPECTROMETER
TO &-INCH SORBEMT

TRAP, WATER BAFFLE
AND DIFFUSION PUMP

256 CHANMEL TIME-OQF -
FLIGHT AMALYZER SYSTEM

|
I

14 STAGE MULTIPLIER

\ E. McDaniel 1984
FPAPER TAPE l

PUNCH
4= NCH SORBENT

Advantages Limitations i wiren sareie

AND DIFFUSION SUMWP

PRINTER

«  Clear identification * Traditional operating pressures

(7.5x10-2 to 10 Torr),
*  Wide E/N range possible to study

(0.3 Td to 5000 Td) 15
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Techniques to Identify lons — Time-of-Flight (Mass) Spectrometry

* Makes use of a ion drift chamber

How does it work?

lons are
formed by

electron

impact;

Cloud of ions drift
along the drift
region;

Upon reaching the
charge readout the

drift time is
recorded;
Time will depend on
GRAN SASSO the mass-to-charge
G|S SCIENCE INSTITUTE ratio, therefore

enabling the indirect

I SCHOOL OF ADVANCED STUDIES . . e i
cuola Universilaria Superios ion identification.

Time-of-flight mass spectrometry (TOFMS) is a method
of mass spectrometry in which an ion's mass-to-charge
ratio is determined via a time of flight measurement.

Advantages Limitations
*  Operating pressure * No direct identification is
possible;

*  Possibility to study reactions
* E/N range is limited
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EXPERIMENTAL SETUP AND
WORKING PRINCIPLE

Xenon UV flash
lamp
10Hz, <600ns

GEM
I_ Charge
Pre-amplifier
L @\
_____________ CsI

Frisch Grid

G GRAN SASSO
SCIENCE INSTITUTE
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- Digital
Oscilloscope

Biskiramix TS 320 Gl

Frisch Grid T E IFrisch Grid
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EXPERIMENTAL SETUP AND
WORKING PRINCIPLE

Xenon UV flash
lamp
10Hz, <b00ns

Frisch Grid

—

Charge
Pre-amplifier

Digital

Oscilloscope

& S0
>
E
150
peaks centroids =
£ 100
@®©
®
c
average drift time of the ion’s (%’ 50
distribution (£ 4.¢)
Xdrift Vy4 0
Vy = K =—
Larift E

were recorded...

G GRAN SASSO
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After the signal and the background

* Subtract the background to
the signal

* |dentify possible peaks

* Fit Gaussian curves to the
spectrum obtained

| «——

Argon

p=7.039 Torr A
E/N =30 Td 2

UV Flash
signal

Koy = 1.57 cm2V-ist (Ar+ ?)

K02 =1.92 cm2V-ist (Ar'2+ 9)

100 150 200 250
Drift time (mg)
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JON IDENTIFICATION PROCESS

Table 4.13: Summary of possible reactions and respective rate constants or cross section
for electron impact ionization at 20 eV (references on the last column).

Identification of candidate

ions

GEM Voltage

Possible Reactions
* Cross Section
* Reaction Rates

Most
Probable
Candidates

0.9}

08

o
~

o
o

lon Fraction
[=] [=]
$a (5,1

o
(A

0.2}

01 \ Xe-CO2(50-50)

Reaction time

0

1074 107 102
Time (ms)

A.FV Cortez 2018
Reaction Rate Const. Cross Sec. Ref.
(*cm‘?-sfl or **cmﬁ-sfl) (10*16 cm2)
e~ + Xe = Xet + 2¢~ - 2.4370.12  [167]
Xet + Xe — Xe + Xe* 2.5x10710 * - [199]
m—) Xet + 2Xe — Xed + Xe 2.070.2x 10731 = - [169]
e~ + COy — CO; + 2e - 0.45270.032  [200]
CO5 + COy — COs2 + COJ 3.770.37x10710 - [190]
CO5 + CO2 + M — CO5.CO2 + M 2.170.3x1072 = - [191]
CO, + Xe — XeT + CO2 6.071.8x10710°* - [201]

Identification of expected Compare with experimental
mobility results

* Estimate the influence of the # Theoretical Experimental
predecessor ion on the overall

Values Values

mobility observed experimentally

* Langevin Limit (formula)

* Blanc’s law (mixtures)

20
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Appearance Energy

Xet-12.1eV
P.N.B. Neves et al. 2009
lon mobility in pure Xe 0.8 [ —_
F¥e S Yet 4+ 26 Above threshold °  ©ne peak present (below 30 Td) 07 5 ]
¢ ¢ ¢ ¢ 12.1 eV * Two peaks present (above 30 Td) [ S .. 3 ; {i ]
: [ "t oo X x5 A
0.6 } "}iﬂ }i:iﬂ'{"' S Xep
8 ~ o5f tis Eﬁﬁ;\-‘g. ., ;
~ E/N =15Td Xe2+ r:f” 9 g o x\;/;-\) +
éé P = 8 Torr NZ 0.4 | m“xXe_:
2 4 ¥ 03} ;
\Y 52 X

Xe* +Xe = Xe + Xe* £ : Helm ?{S$%>$1§p3,; :
° 02 | Helm (1976): 2P ]
_ 3 — [ . (1976): 5Py .
k =25x%x10-10cm /S G o : Viehland and Mason (1995): 2Pz, o ]
del h . 5 - Viehland and Mason (1995)5 Pip = ]
(delays the atomic ions) ke, 0.1 Barata and Conde (2005): 5P32 ]
w : Barata and Conde (2005): “P7, ]
0] 0 [ . . . This \./vo.rﬁI . . ]

+ + 1,2 1,4 1,6 1,8 2 10 100

k=2.0x10"31 Cm6/5 Ko; ~ 0.578 ecm2V-1s1 Xe?

~ 2\-1¢-1 +
T=75.2us (LP — 8 Torr) Koy ~ 0.642 cm?*V-'s”!  Xe,

T = 8.3ns (AP — 760 Torr) 21



IONIZATION

REACTIONS

New Horizons in Time Projection Cambers — 5th to 9th October 2020, Santiago de Compostela (Spain)

| N N Istituto Nazionale di Fisica Nucleare

G GRAN SASSO
SCIENCE INSTITUTE

I SCHOOL OF ADVANCED STUDIES

EXPERIMENTAL RESULTS — CARBON DIOXIDE e

Energies
(02" 13.8eV
0+ 19.5eV
Above threshold 0% 19.0eV
e+ (0,2 (0," + 2¢ HH Ve
2 2 13.8 eV lon mobility in pure CO,
" One peak present P.M.C.C. Encarnagdo ef al. 2015
1,300
e+ (0, (0," +2¢ 847% Above 19.5 eV*
9 (0" +0+2e 37% T ical spectrum 1,200 - Langevin Limit
2 0"+ (0 + 2¢ 5.4% —~ 5 yp P G} { {
>
E E/N=15 Td co;.co2 100 | T
O 4 P =8 Torr a I
3 = ' 2 t 3 3 + *
LC:L 3 Veem =25V g‘ .Zmoo |
C0,* + €0, > (0,+ (0, £ el 2
3 - ® + Experimental results
k =3.7x10"10cm /S S 2 : % 0,900 - .
.. ()] u G. Schultz et al. [19]
(delays the atomic ions) & :
(0 + (0 + M 9 CO (0 + M : ' 0,800 - - | | 1 T M. Saporoschenko [20]
k—21><10-280m/ M m
(Cluster formation) 0,5 0,7 0,9 0,700 . . 0 s 2 ’ o - w0 .
L 2 | Drift Time (ms) E/N (Td)
1=71.6ns (LP — 8 Torr) Longevin 2°r]m]" a . Ko; ~ 1.17 cm?V-'s! CO,* CO,
T ="7.9ps (AP — 760 Torr) LITam¥s™ 7 097 anVs * values obtained from ionization cross sections

22 for electron impact of 25 eV
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EXPERIMENTAL RESULTS — Xe-(O0:

Table 4.13: Summary of possible reactions and respective rate constants or cross section
for electron impact ionization at 20 eV (references on the last column).

G GRAN SASSO
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A.F.V. Cortez et al. 2017

Reaction (* 3Rinl:e C(:fSt'ﬁ _1) (f[:??: Secz.) Ref.

cm--S or cm- S cm
= T Xe 5 X & 3e- - 5013 167 lonization probability Xe ions will be
Xet 4 Xe — Xe + Xet 9 5y 10-10 * S [|1—]_’99] for Xe atoms is about » preferencially
Xet + 2Xe — Xej + Xe 2.070.2x10731 = - [169] 5 times higher than produced down to
e~ + COy = COJ + 2e~ - 0.45220.032 | [200] for CO2 15% Xe.
COF + COy — CO2 + COF 3.770.37x107 10 * - [190]
COJ 4+ CO2 + M = CO5.COy + M 2.170.3x10728 - [191]
CO; + Xe — Xe™ + CO 6.071.8x10710 * - [201]

Considering a general reaction... Identification of the final ion

Rg + RgT-> Xt +Y

o
©

50% Xe

wan

. . . = 4

We can determine the reaction time: Z: S
1 [Rg*]  _t 8 oo — G-k

Z —_— e e T » Q c?;2+ » =

k R » R + ©os C02+.C02 1 =S
[Rg] [Rg*]o = Xe2r ] g 2

o <

. . . Da o
where Variation of the concentration oal % 1
k - rate constant [ ] of a specific ion in a mixture. 04 \ Xe-CO2(50-50) @

R, |=N 0.50 0.75 1.00 1.25 1.50 1.75
P - Pressure g PAtm .?075 104 102 102 107! 10°

lon's Drift Time (ms)
23

N =245x%x 10 cm™3 Time (ms)
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EXPERIMENTAL RESULTS — Xe-(O0-
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EXPERIMENTAL RESULTS — Xe-(O0:

5% Xe C0,*.CO,/Xe*

0.25 0.5 0.75 1 1.25 1.5

lons move slightly faster and the signal
amplitude slightly increases with the presence
of CO, between 95 and 5% Xe;

Only one peak is observed expected to be from
Xe ions;

Behaviour well described by Blanc’s law
following the trend for Xe,* for relevant

mixtures.
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VALIDITY OF LANGEVIN THEQRY

Cases where Langevin’s theory fails?

» Large molecules;
« Atoms/molecules weakly polarizable;
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Polarization Limit Elastic Limit
1 : K 1 Problem is that d*
K., o«—— last X —5——= : is not known with
pol eLas 2
Vo d*y/ precision.

How to surpass Langevin’s Theory limitations?

» Fitting the experimental mass-mobility data we can obtain better estimates, a

good example is carbon dioxide. A.F.V. Cortez et al. 2017 _
*sum of the ion

Xenon Carbon Dioxide Argon .
9 and gas radii
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NEGATIVE ION MOBILITY

Opportunity
In a conventional Time Projection Chamber (TPC), | | -5 --'33333-'33Ffs—;§;;ij_r 0 .
the information is carried by electrons which have | | ™ I -
large transverse diffusion = This limits the o S& =
amount of information that can be collected from a Gl) lo [ €
given track (tracking capability). S S 1} e
——

What lies ahead:-- —

In a Negative lon TPC, the ions carry the information.

‘ Bottom GEM electrode Top GEM electrode
electrical contact = electrical contact

[EEN
u

[ O-ring cavity V /(
£ N

[EEN
o

Negative ions have much lower transverse diffusion

o un

which leads to much better spatial resolutions (but

-5

plitude (mV)

also imply a lower rate).

Am
AN

'
[REN
(2}

2
Drift Time (ms)

These studies lead to 2 common CERN/RD51 projects:
- 'Measurement and calculation of ion mobility of some gas mixtures of

ME

- ‘Study of negative ion mobility and ion diffusion for Negative lon TPCs’ 28
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HIGH PRESSURE ION MOBILITY

How to move from low pressure to high pressure?

If T K tdrift

Key differenficﬂ-ing chfors: Only the initial ion will be observed
and the mobility is not affected

» Reaction time (T)
» Cluster formation Pressure |Reaction

(pressure dependent) X
» Impurities Distance

3

Low pressure measurements
tend to be more susceptible
to the influence of impurities.

Ift=> tdrift

Both ions will be present but won't
be possible to distinguish them in
the time spectra.

‘ Fft< thift

Only the final ion will be present.

" 4

Enables to mimic the same
conditions at high pressure

b

Ift> tdrift

‘ Only the final ion will be observed

. . and the mobility is not affected
May prove to be na interesting approach as

lowering the pressure might allow to study faster
reactions and study the Effect of high E/N or the
equivalente high effective temperature.

G GRAN SASSO
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How to determine the true mobility of
the ions?

Main limitation:

Reactions that might take place or
are favored at higher pressures

29
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SUMMARY

"Importance of ion mobility in the development of gas radiation detectors
* Detector design (dimensioning, design of gating devices)
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= Performance (signal formation, rate capability, spatial resolution, aging and discharges)

"Discussed the effect of several processes and mechanisms on ion mobility
= Electric field
= Gas density
= Chemical reactions (resonant charge transfer, cluster formation and impurities)

*Techniques used on ion identification and how to take advantage from low pressure ion drift
chambers

"Explored the experimental measurements performed in Coimbra

*"Addressed some of the main challenges and talked about future prospects
* Validity of Langevin Theory
* Mobility of negative ions
= High pressure

31
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