Gravitational Wave Astronomy with LIGO-Virgo

IGFAE Retreat – Jan 10 2019 Thomas Dent

with G. Davies, J. Alvarez-Muñiz, E. Zas, PhD candidate TBD

Laser interferometric detection

- 'Michelson interferometer':
 end mirrors free to move
 along arms
- Differential length change $\delta(L_x L_y) = h(t) \cdot L$
 - ⇒ time of flight difference
 - ⇒ relative phase difference@ beam splitter
 - ⇒ transmitted intensity variation @ PD

LIGO

Funding

- 1984: LIGO founded as a Caltech/MIT project
- 1990: LIGO Construction Project approved by NSF
- 1992: LIGO Construction Project funded by NSF
- 1992 1995: Site selection, vacuum prototyping
- 1995 1999: LIGO facilities construction at

Hanford and Livingston

Construction

- 1998 2002: Installation/integration of initial LIGO interferometers
- 2002 2005: Interferometer commissioning interleaved with science runs (S1-S4)
- Nov 4, 2005 Sep 31, 2007: S5 science run
 - Design sensitivity reached

Initial LIGO

- 15 Mpc range; > 1 year of triple coincidence data
- 2007 2009: Enhanced LIGO instrument upgrade
 - Tests key Advanced LIGO technologies
- Jul 7, 2009 Oct 20, 2010: S6 science run
 - 18 Mpc range to merging binary neutron stars
- Apr 2008: Advanced LIGO Construction begins
- Dec 2011: Advanced LIGO detector installation begins
 Advanced LIGO
- Mar 2015: Advanced LIGO Construction complete
- Sep 2015: First Advanced LIGO Observing Run 'O1'
- Sep 14, 2015: First binary black hole detection
- Nov 30, 2016: Advanced LIGO O2 run starts

LIGO Laboratory: 180 staff located at Caltech, MIT, Hanford, Livingston

LIGO Scientific Collaboration: ~ 1200 scientists, ~100 institutions, 16 countries

ADVANCED VIRGO

6 EU countries: France, Hungary, Italy, Poland, Spain, and The Netherlands 20 labs, ~280 authors

A global network

- Higher detection rate
- Greater accuracy on source parameters
 - distance, sky direction, GW polarization ...

LIGO-Virgo performance in 2016-

GW sources: Transients

Image credit: D. Price (Exeter) & S. Rosswog (Int. U/Bremen)

Cataclysmic events of compact astrophysical objects

- Mergers of NeutronStars, BlackHoles
 "Compact Binary Coalescence"
- CoreCollapseSuperNovae
- Pulsar glitches / oscillation modes ?
- Exotics : cosmic string kinks ? ...

Simulation: F. Hanke et al. (MPIA Garching)

GW sources : Continuous / Persistent

Less intense GW over long times (days → years)

- *Continuous Wave*: sinusoids from rotating NS
 - many potential sources in Galaxy
- Stochastic: random 'background' from superposition of unresolved sources
 - astrophysical transients at high redshift
 - primordial quantum fluctuations / critical phenomena in very early Universe

Movie: Chandra X-ray images of Crab pulsar

14 September 2015

Merging black hole masses &

BH merger rate and mass distribution

Prediction from 2010: 0.1, 5, 300 /Gpc³ /y (low, realistic, high)

$$R = 52.9^{+55.6}_{-27.0} \,\mathrm{Gpc^{-3}\,yr^{-1}}$$

• Mass distribution of merging BH : nearly flat up to 40-45 ${
m M}_{\odot}$

Multi-messenger Astronomy with Gravitational Waves

Gravitational Waves

X-rays / Gamma-rays

UV / Visible / Infrared Light

Radio

HE Neutrinos

Search for EM counterparts

- Source of GW can be localized
 - time difference
 - GW amplitudes
 - oscillation phase

Localization and broadband follow-up of the gravitational-wave transient GW150914 (LSC-Virgo + many authors)

17th August 2017

https://www.youtube.com/watch?v=aWX-BY-A9CY

GW170817 on the sky

A few science results

Speed of gravity = speed of light

$$-3 \times 10^{-15} \le \frac{\Delta v}{v_{\rm EM}} \le +7 \times 10^{-16}$$

- BinaryNeutronStar mergers create many heavy elements ('kilonova')
- BNS masses consistent with Galactic binaries

Amplitude of GW ⇒ distance estimate
 Host galaxy ID ⇒ redshift
 Independent estimate of Hubble constant

$$H_0 = 70.0^{+12.0}_{-8.0} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$$

GW170817 HE neutrino search

- Host galaxy ideally situated relative to Pierre Auger observatory
- No significant HE neutrino events
 Upper limits on emission from BNS merger

LVC+IceCube+ANTARES+Pierre Auger Astrophys. J. Lett. 850, L35 (2017)

IGFAE activities within LSC

Major current/planned contributions

- ➤ Offline search: correlate 10⁵–10⁶ binary waveform models with data from global network, reproducible results for publication, optimize sensitivity
- ➤ Rates/Populations: interpret search results by comparing to models of binary merger population in Universe
- \blacktriangleright Multi-messenger search : associate GW events with EM/ ν /CR events

Minor contributions

- Low latency search : preliminary identification of events (minutes to hours) for EM followup
- DetChar & DQ: diagnose state of detectors, select data for analysis
- Tests of GR: search for non-GR effects, bounds on deviations

IGFAE-related upcoming events

- Galician Gravitational Wave Week GGWW
 Jan 14-18: 15 lectures on GW & related topics
 https://indico.cern.ch/event/779256/
- 9th Iberian GW meeting: June 3-5, SdC Announcement within next few weeks
- GR/Amaldi meeting: July 7-12, Valencia IGFAE/USC represented on SOC

THE FUTURE ...

Upcoming science runs

Projections from Living Rev. Relativity vol.19 (2016) 1

- 03 run to start \sim early 2019, duration \sim 1 year
- Advanced LIGO design sensitivity by 2021-22

Extending the network

'A+' Advanced LIGO Mid-scale Upgrade

- Upgrade to aLIGO that leverages existing technology and infrastructure, with minimal new investment and moderate risk
- Target: average 1.7x increase in range over aLIGO
- → ~ 5x greater event rate than
 Advanced LIGO
 ~ 40 times greater than current
 Advanced LIGO sensitivity
- Stepping stone to future detector technologies
- Two year down time; back online by 2023

A+ key parameters

12 dB injected squeezing15% readout loss100 m filter cavity (FC)20 ppm round trip FC loss

Coating Thermal Noise half of aLIGO25

Further on: Voyager, Einstein Telescope, Cosmic

LIGO Voyager – exploiting the LIGO Observatory facility limits

Explorer Longer Arm Length Interferometers

