

Commissioning and exploitation of the Laser Laboratory for Acceleration and Applications

José Benlliure

Instituto Galego de Altas Enerxías Universidad of Santiago de Compostela, Spain

A new technology for particle acceleration

2004

nature

home

Q search

? help

this week's highlights

highlights

Dream beam

Good news for physicists — particle accelerators are set to become much cheaper and smaller. Using ultrashort and ultra-intense lasers to generate extreme electric fields in plasmas, three groups have been able to produce high quality electron beams. These relativistic beams will have many applications, compact table-top particle accelerators included. The cover simulation (from Geddes *et al.*, p. 538) shows a plasma density variation driven by the radiation pressure of a laser pulse guided by a preformed plasma

2018

Laser-plasma accelerators rely on the Chirped Pulse Amplification invented by Mourou and Strickland.

IGFAE retreat, January 10, 2019

Laser-plasma acceleration in a nutshell

Ultra-intense and ultra-short laser pulses with power densities above **10**¹⁸ **W/cm**², traversing an electron plasma create a charge separation, which can build up to a charge-density wave (wakefield) of the order of **TV/m**, electrons entering this wakefield can be accelerated to relativistic energies.

The cloud of accelerated electrons may leave the target material forming a chargeseparation field at the surface of the order of **TV/m**. Such fields can ionize atoms and rapidly accelerate ions normal to the initially unperturbed surface.

José Benlliure

The Laser Laboratory for Acceleration and Applications

A research infrastructure at USC promoted by IGFAE:

- High-power laser with two beam outputs:
 → 1 J, 25 fs, 10 Hz, ~ 50 TW
 → 1 mJ, 25 fs, 1 kHz, ~50 GW
- Radio-protected area.
- Laser clean room.
- Instrumentation laboratory.

Two main experiments:

- Coherent X-ray source (Lasex):
 - \rightarrow 1 mJ, 25 fs, laser pulses.
 - \rightarrow New imaging technologies.
- Proton source (LaserPET):
 - \rightarrow 1 J, 25 fs, laser pulses
 - → New technologies for medical radioisotope production and radiotherapy.

IGFAE retreat, January 10, 2019

Construction and commissioning time schedule

	2013				2014				2015				2016				2017				2018			
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Conceptual design																								
Technical design																								
Laser construction																								
Building construction																								
Experiment design																								
Facility commissioning																								
Laser commissioning																								
X-ray source																								
Proton source																								

2016: L2A2 commissioning

L2A2 experimental area as in January 1st 2016

José Benlliure

2016: L2A2 commissioning

Installation of cranes and vacuum chambers:

Radiation shielding and vacuum systems:

José Benlliure

2017: Setting-up and first results with the X-ray source

A Khz X-ray source for imaging and laser-plasma acceleration targets development

- ✓ Laser parameters: ~ 1 mJ, 35 fs, 1Khz.
- $\checkmark\,$ X-ray source: continuous operation ~15 min., T~15-30 KeV , source size ~10 $\mu m,$ small divergence.

Setup for X-ray absorption and phase contrast imaging).

2017: Setting-up and first results with the X-ray source

2017: Setting-up and first results with the X-ray source

Tomographic imaging.

5 mm

2018: Setting-up the proton source

Laser pulses transport and focusing systems.

Acceleration target assembly and positioning systems.

José Benlliure

2018: Setting-up the proton source

New detection devices for ultra-short proton pulses.

Thomson parabola for ion identification and energy measurement.

Time of flight detector for energy spectra measurement.

IGFAE retreat, January 10, 2019

2018: First shots for proton acceleration

April 2018.

IGFAE retreat, January 10, 2019

José Benlliure

2018: New target positioning system

April-November 2018.

- Target position map with ~ 1 μ m accuracy.
- Shot-by-shot target position correction.

2018: First laser-accelerated protons

November 2018.

November 2018.

José Benlliure

✓ The Laser Laboratory for Acceleration and Applications is a new research infrastructure at USC promoted by IGFAE.

- ✓ The facility is based on a Ti:Sa compact laser with two beam lines:
 - 1 mJ, 1 kHz, 35-100 fs and 10⁻⁶ ASE contrast ratio
 - 1 J, 10 Hz, 25-100 fs and 10^{-10} ASE contrast ratio
- ✓ Two radiation sources:
 - proton acceleration: radionuclide production for medical imaging
 - coherent X-ray production for tomography and laser-plasma acceleration targets development
- ✓ X-ray source installed and commissioned in 2017:
 - The source is fully operative.
 - First results on new imaging technologies obtained and close to publication and to be transferred
- ✓ Proton source installed and commissioned in 2018:
 - First protons accelerated last November with a highly reproducible pattern.
 - Improvements in the laser system on-going to reach the required 10 MeV.

José Benlliure

J.B., D. Cortina, D. González, J. Llerena, L. Martín, J. Peñas University of Santiago de Compostela

F. Fernández, C. Ruíz University of Salamanca

J.M. Benlloch, M. Seitmez University of Valencia

C. Guerrero University of Sevilla

R. Zaffino Centro Nacional de Microelectrónica, Barcelona