Regular black heles and thelr relationsiip to
polymerised models

- ¢ FOR ASTROPARTICLE
» - PHYSICS

joint work with Hongguang Liu, Eric Rullit, Stefan Weigl and Parampreet Singh
Phys.Rev.D 110 (2024) 10, 104017, arXiv:2308.10949 + arXiv:2405.03554

JUGAR |1 workshop on Quantum Gravity, QFT on curved spacetimes,

. Gravitational waves and cosmology
DFG FDoerL;EShC:rfgsgememschaft CSI C M adrl d
- 05.12.24

Kristina Giesdl, Institute for Quantum Gravity, FAU Erlangen-Nurnberg



Motivation

Investigate quantum black hole models interesting for quantum gravity
Many people contribute:

[Ashtekar, Alonso-Bardaji, Bojowald, Brizuela, Modesto, Cartin, Khanna, Boehwer, Vandersloot, Chiow, Camplglia,,
qambint, Pullin, sabharwal, Brannlund, Kloster, De Benedictis, Olmedo, Dadhich, Joe, Singh, Haggard, Rovellt, Vidotto,
Coricht, Satnt, Cortez, Cuervo, Morales-Técotl, Ruelas, Pawlowskl, Blancht,, Christodoulo, D’AMbrosio, Alescl, Bahramd,
Pranzettl, Husaln, Kelly, Santacruz, Wilson-Bwing, Lewandowskl, Zhang, Ma, Song, Bodendorfer, Mele, Minch,
Navascués, Mena Marugbwn, Garcla-uismondo, Perez, Speziale, Viollet, Hawn, K.G.,Liu, LL, Vera, wWeigl,,...1

Recent reviews: [gambini,olmedo,Pullin '22], LAshtekar, Olmedo, Singh ‘231

Dynamical formulation of gravitational collapse: consider spherically
spherically symmetric models with dust

LTB models, Oppenheimer-Snyder collapse also special case of vacuum

solution
Here we will consider effective models to formulate such models which

iInvolve (LQG inspired) quantum corrections

Aim: Develop formalism that allows to investigate a broad class of effective
models Iseminal work by ®Bojowald, Harada, Reyes, Tibrewala ‘0g 091




. Classical LTB models and vacuum solutions




|. Classical LTB models

LTB: Spherically symmetric solution with dust
We consider Ashtekar-Barbero variables for spherical symmetry (A7, E)

After implementing the Gauss constraint: ®ojowald kastrup '00l, [Bojowald, Swiderski‘oz]

aa;Ex(ﬂf) (ZC, 97 ¢)
2E¢(I) 7'3) do

060 38K G o+ (s
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+ (BK¢(x)73 —

7'2) sin(6)d¢ + cos(6)m do

B 9

7 oxpa =B (2)sin(0)m10, + (B?(2)7) sin(0)dp + (E®(z)73) 9y,

Reduced phase space including dust:

{Ku(2), E°(y)} = Go(z,y)  {Ky(2),E®(y)} = Go(z,y) {T(x),Pr(y)} = d(z,y)




|. Classical LTB models: LTB condition

General spherically symmetric metric

%)’
ds® = —N(z,t)*dt* + () (dz + N®dt)° + |E®| dQ?

B

Consider the form of the LTB metric I[temaitre =21, [Tolman 341, [Bondi '47]

(E))
11E=| (1 + £(2))

ds? = —dt® + dz® + |E*|dQ?

To match both metric we need reojowald, Harada, meyes, Tibrewala ‘oz 091

N=1 N*=0 Gi(z)= QE;;(m)—\/l—l—S(x)z()

marginally bound case &£(z) =0  shells decouple classically

O (z) = ~2VET(2)Kolo), Oikola) = S A0




We can rewrite EOMs in form of Friedmann equation R(z) =

L) =T pa) with  pla) = o (a)

R? 3
Classical vacuum solution: choose dust mass profile M (z) = m = const
using that M is conserved: s(z) integration constant

Ky(z) = (Ej)??) > O, E%(x) = —-2vV2Gm (E“”)% (x) —» E* = g\/2Gm(s(a:) — 1) §—> E¢

4

(e A1)
(0. E%)°

1
ds* = = (1= G()’) dr' + grogydr® 41740 G0Y = T




|I. Effective models
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1. Can we construct polymerised vacuum solutions in a similar way?
2. Given a Schwarzschild-like metric can we reconstruct the associated
polymerised model?




|l. How to construct solutions here?

Class II: Compatible LTB condition exists + conserved energy density
restricts possible polymerisation functions and form of LTB condition

Dynamics of effective model:

EOM: 0,E° = —2vE= f®) (f<1> — g2y (2hg + 4E"Bgahy — hn) + hl)

LTB

Cons. H®)(z) := L |\ VB >)} (), C)(z) = 0, H'™(z),

energy dens.  2C | 9@

Requirements for polarisation and inverse triad corrections in class II:
hi —2E*0g=hs  —2E%0gF + f(1)

Ok, F (K, B*) = 2f®) (K4, E*)  and —
ho F

General effective LTB condition: ¢ (z) .= £E¢ — Jo) (K4, E%,2)| () 2(z) := /1 + E(2)

Here class Il marginally bound: 9(a) = 9(a) (E”) classical case: 9(a) = 1




II.Can we still construct a solution for E*?

We need the inverse of F:

) JE Given this we can solve
H®) (z) := (—F + hs (9(2@) — 1))] ()] for Ky(t, x)

2G g(a)

Class Il important: LTB

. 9o) o _ -
Ky(t, ) = Fj;) [hz (g?a) — 1) —2GM ()L B ] = Fiy uw [E7] | condition only depends

Ee’
3 on E*and likewise ho

Why label (¢) ?

Specialise to models where classical LTB condition is compatible + no inverse triad

corrections (mimetic model exists)
monotonic C(i)

Phase space trajectories: level sets segments

¢(Kg, E®) := H®(z) = —M(x)

K
c(b,v) bi= —2 p =

H(x) = —M(x) =




II. Now we can construct the solution

Given the Iinverse F_1 we obtain for the EOM and its solution:

o E*
2V E®

with

(t,2) = =1 [Fgy [EX], BX] E@)(t,x)zf(;)l(s(x)—t)

4" and E° = Ef)(t,2) 0 By (t,2) o

Sy = /
2V E= f(2) [ (@ B2, E* | continuous by suitable choice of s(x)

Form of the solution in Schwarzschild-like coordinates
Trafor = \/ﬁonly

1
ds® = — (1 — Q(z') (7“)2) dr? + dr? - r? dQ? defined for each
9 (r)? (1 = Gy (r)?) piecewise segment

In general can be different ;) for each 1
example later




ll. Reconstruction algorithm

So far we chose some polymerisation determined F~! and from solution g(i)
Can we also obtain the polymerised model given some choice of g ?

In particular interesting for regular black holes like Bardeen and Hayward

9 2

rsT 2 _ _ TsT
Bardeen G(r)* = 2+ ) Hayward G(r)” = 8 P

Reconstruction: special case of class Il with classical compatible LTB
condition+no inverse triad corrections, then factorisation in M

- M(x) = BO() = o pF@)(), o= (E7)

2Gm 1y

Using the result for Q(@from before we obtain it as a function of — — = 3

rs11 _ 37 - 1 [Ts Ts Ts r
r_3H - o34 (p_1 [;_SD 4 [r_s} — _/drzr???g( ) :/d(r3) 2G ()

From this we can derive the polymerisations of Bardeen and Hayward metrics




Ill. Examples




Polymerised vacuum solutions with a symmetric bounce: (no inverse triad corr.)

.2
F(b) == oab) = WA, A:=d4xlp  LTB condition 9(a) =9a =1

2 .2
Then we obtain in Schwarzschild-like coordinates G(r)2 =12 ZATs

o
iE r r
Since G(r)is real, minimal radius min = (rsaa)®

D. a. Kelly, R. santacruz, and €. Wilson-Bwing ‘20,
LewandowskL, Y. Ma, ). Yang, and C. Zhang '22]

This coordinate is only defined for b < (0 5) or b€ (g w) two monotone segments
have same

Taking G(r) as starting point one can also obtain by reconstruction F(b) =
Next: underlying effective spherically symmetric model

FO (b = 3sin’ (aab) — aabsin(2ab) 7O ) = sin (2aab) mimetic Lagrangian
2 v —
QA 2an

2G E¢

| S T - . T
Effective Hamiltonian: | ¢a— E°VE® |3sin*(aab) | (WE_ K. _b> sin (@ab) (5

aA




Modified Friedmann equation gives the following polymerised vacuum solution:

1 bouncing solution with minimal radius
R(t,z) = (2Gm)

Frin — (2Gmoz2A)%

We can further extend the solution to the marginally bound case LTB solution:
minimal radius

R(t,z) = (2GM(z)) (ag + %Zz> L s(a)—t rin = (2GM(2)02)

Curvature scalars for generic dust profile M(x) at the bounce z=0, no dependence

. A o % on M
(922 + 40%)° S’ (922 + 403 )" 82

9

M/(CC) 7& 0: R‘z:O — Oé2
A

S = M'(z) (92° 4+ 4a) + 18M (z)s'(z)z

Central singularity is resolved, shell crossing if 9a7(z)2s'(z)? — 40X M'(z)? > 0 (real
roots of S(2))




(11). Non-standard LQC polymerisation

[Papor-Liegener '17], LYing, Bing, Ma ‘091
Polymerised vacuum solutions with an asymmetric bounce: (no inverse triad corr.)

sin® (aaby) (1 — (v2 + 1) sin® (aaby))
(aay)’

F(b) = LTB condition Y(a) =9a =1

Then we obtain in 1 ,yzxo\/ajo + /1= 29229 + 1

. R(t, x)\/
Schwarzschild-like R(t,x) = G+ (r)|,—p(r.a) =
coordinates

an (72 +1)

Here example of two different G(7):

Taking G (') as starting point one reconstruct Z'(b)
Next: underlying effective spherically symmetric model (+mimetic Lagrangian)

_ sin(aaby) (sin (aaby) (72 +1) (2aabysin (2aaby) — 3sin® (aaby)) + 3) — 2aaby cos (aaby))
= 2

_ sin(2aaby) (77 + 1) cos (2aaby) —77) » effective Hamiltonian
2a07y




[Papor-Liegener '17], LYing, Bing, Ma ‘091

In this case the marginally bound LTB solution reads:

5[ 2GM (z) (4dai~y? + 9n2)° 2 . 1
R(t,x) = \/ 1872 — 80371 , S(x)—t=n-— 394 (v* + 1) tanh

Bouncing solutions with bounce at 7Moand minimal radius 7w = 2% /4?92 (2 + 1) M (x)

Modified FRW eqgn defined for each segments C+

2
n > Mo C_ and g()éA’Y2 <n<no Cyt

Curvature scalars for vacuum case

.A B 81’72

R = 5 A 3 IC = 5 S ,C ~ 5 5
(9? +4ary?) S (9?2 + 4axv?) S° 1603 (v2+1)" (272 +1) (n — no)

S = M'(z) (9* +4047?)” +18M ()5 (x)n (4ah? (297 + 1) — 9?)

Central singularity is resolved, shell crossing singularity still present




Hayward

metric

2

g(r)Q — ( TsT

r3+alry)

Polymerization function

1’;'-. —1 __ 2na-+sinh(2an)

- 4a ’
" s 2
an = sinh ) \/ O‘T;"S

Marginally bound solution

Curvature scalars (see App. B)

A
7714/35 !

7)28/382

S = M'(z)n+ 3M(z)s'(z)

R(t,z) = (Z?nﬂhi((i);z) a0

sle)—1 = %a(coth(an) — an)
A B

R = !
4038

S=M'(z)+3M(z)s' ()

K=
165852
tanh(an)
T

shell crossing singularities: situation like in GR: can be avoided by choosing
suitable dust profile M(x) and s(x), €.9. M’(z) > 0 and s'(z) > 0




V. Summary & Conclusions
Formalism allows to investigate a broad class of effective models with
different kind of polymerisation

The formalism can be used in different ways:

1.) start with a given polymerisation in the LTB sector determine the
underlying gauge-unfixed spherically symmetric model

2.) For regular black holes: start with a modified Schwarzschild-metric and
derive the corresponding effective model or vice versa.

Here we considered examples for bounded and unbounded polymerisations

Saw that gauge fixing and/or coordinate choice is more subtle in effective
models in general underlying covariant mimetic model helpful.

Next steps:

Investigate non-marginally bound case in a similar manner

Investigate more in detail shock solutions and whether we can construct
polymerised model without the presence of shell-crossing singularities
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Thank you for your time!




Underlying covariant Lagrangian

Extended mimetic gravity

1

S9uv, d, A = % d4$\/7 [ RW 4+ Lo (o, x1,- ,Xp) + %)\((buqb“ +1)

mimetic field ¢ )\ is a Lagrange multiplier for the mimetic condition, 2+1 dof
Xn = _@R2ghs .. ghn Gt ¢ =V b, du = V,uV.ué.

Spherically symmetric model: Sufficient to have Ly (x1,x2), ¥ = In(E”) 2D action

LLAchowr, Lamy, Liw, Noul 18], [Hawn, Lin '22]

: d*z det(e)e?¥ {72 + Ly(X,Y) + % (¢.507 + 1)}

SQZE ™

(Smooth) mimetic field defines foliation into spacelike hyper surfaces ¢ = const
Generalised Einstein’s equation

wa = Gryw — ij = —X\0, 90, ¢, 0,00"p = —




Underlying covariant Lagrangian

Now for models with have no inverse triad corrections + compatible with

-scheme we can relate the choice of the mimetic potential to specific
choices of polymerisation function LAchowr, Lamy, Liu, NJM 18], [Haw, Lin '22]
1 A |
So = — d*zdet(e)e®” ¢ R+ Ly(X,Y) + = (6,07 +1)
4G J m, 2 \"

Higher derivative couplings can be expressed in terms of X,Y and relate

to extrinsic curvature

O B¢
E¢

Y = —hi0,;00;¢ = o E _ sin(2ab)

X = 0O Y —
h® + 2E7 20

Underlying covariant model allows to gauge-unfix temporal gauge with
respect to mimetic field and consider coordinate taros in (t,X)

Interpretation: effective model has different clock than classical model




