Machine learning in nuclear and particle physics

Christophe Rappold

IEM – CSIC

27 January 2025

Reminder from Part 1

- Machine learning is
 - Extracting semantic information with parametric models
 - \rightarrow Learning = tuning the many parameters of the model
 - Finding patterns / associations \rightarrow predictions
 - 3 types of methods:
 - Reinforcement / Unsupervised / Supervised learning
- Main Algorithms for supervised learning:
 - Decision Tree: Decision trees / Random forests / XGBoost
 - Neural networks: FFNN, CNN, RNN, Transformers ...
- How ?
 - optimization problem: find optimal weights
 - \rightarrow careful of Underfitting / Overfitting

Outlook

- ML: S-B separation & particle identification
- CNN : alpha decay in emulsion
- GNN : particle tracking
- GAN : simulate emulsion reaction
- Mask R-CNN : hypernuclei finding in emulsion
- Segmentation: full digitization of nuclear emulsion data

ML for 1. S-B separation 2. Particle Identification

Multivariate analysis (MVA)

- We have data S and B described by discrete variables
 - \rightarrow Separating S and B
 - Classification of measurements using a set of observables ($V_1 \dots V_n$)
 - \rightarrow Find optimal separation conditions considering correlations

Signal / Background separation: Neural network

- WW cross section (1996): S: $e+e- \rightarrow W+W- | B: e+e- \rightarrow qqgg$
 - Input variables based on jet structure, event shape etc

27/01/2025

C. Rappold – ML in Exp. physics

- ALICE experiment: Study of QGP → conditions just after Big Bang
 - PID with TPC and TOF

- ALICE experiment :
 - PID with TPC and TOF

• Models of dE/dx vs p/q & β vs p/q

• Considered features:

 $TOF N \sigma = \frac{TOF^{measured} - \langle TOF^{particle} \rangle}{\sigma_{TOF}}$

- Multiplicities in detectors
- DCA to primary vertex

- Random Forest :
 - Create Decision Trees :
 - Each decision tree → optimized on a random subset of features & only access to a random set of the training data
 - increases diversity in the forest \rightarrow more robust prediction
 - Final classification \rightarrow vote

27/01/2025

CNN for alpha decay in nuclear emulsions

My main research topic

• Hypernuclear study:

27/01/2025

- J-PARC E07 experiment :
 - J-PARC : Japan Proton Accelerator Research Complex

27/01/2025

- J-PARC E07 experiment
 - Study of double-strangeness hypernuclei
 - Hybrid method: Triggered detectors + nuclear emulsions

Triggers by the observation of (K-, K+) reactions

• Scanning methods :

• Current outcome of E07:

$\Lambda\Lambda$ candidates: 14 Twin A events: 13 Others: 6

 ${}^{15}\Xi C$

17

AABe H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

- Current outcome of E07:
 - Triggered events : Ξ^{-} identified and tracked by detectors + outgoing K+ \rightarrow estimation of the position of stopped Ξ^{-} in emulsion
 - Visual inspections by an optical microscope \rightarrow around the estimated stop position
 - Small portion of emulsion plates analyzed → too much human workload !

- Still in those 1300 emulsion plates :
 - K- beam interacted directly with the nuclei of the emulsions

 \rightarrow produce hypernuclei (single & double)

- It was proposed to search for hypertriton $(^{3}_{\Lambda}H)$
- But : no additional information \rightarrow need to scan everything !
 - \rightarrow 1.4 billion images / emulsion : 110 TB x 1300 \rightarrow 140 PB
 - \rightarrow 560 years to analyze this
- Background :
 - Beam tracks & Nuclear fragmentation : 10000 & 1000 / mm²
- Use of machine learning to find those events !
 - \rightarrow To be done in 3 years

- Study of emulsion:
 - Measure ranges of the particles & fragments
 - \rightarrow With range kinetic energy relation: measure of decay kinematics
- Alpha decay events:
 - Spontaneous decay chain of long-lived radioisotopes such as uranium and thorium in the emulsion
 - Calibration for density / space homogeneous
 - \rightarrow Absolute calibration of the range kinetic energy relation
- Convolutional Neural Network: ResNet-50

C. Rappold – ML in Exp. physics

Finding alpha decay for nuclear emulsion calibration

• What is a CNN :

27/01/2025

- Data with some "invariance to translation"
 - \rightarrow A representation at a certain location can be used elsewhere
- Convolutional layers, build on this idea:
 - A same "local" transformation applied everywhere
 → preserve structure of signals
- 1D Discrete Convolution:

 $x \in \mathbb{R}^{M}, u \in \mathbb{R}^{n}, \forall i \in [0 \dots M - n + 1]: (x * u)_{i} = \sum_{i=0}^{n-1} x_{i+i} u_{j}$

- u is called Convolutional kernel of width k
- Scan across data and multiply by kernel elements

• Convolution Layer: preserve spatial structure 32x32x3 image

activation maps

27/01/2025

- ResNet:
 - 34 layers:

- Classics : ResNet - 18, 34, 50, 101, 152 (layers)

Params: 25M

Params: 60M

24

• Alpha decay events (calibration) : CNN

Training data (real images)

27/01/2025

• CNN classifier : Alpha decay detection

	Precision	Recall	# of candidates
Conventional method	0.081 +- 0.006	0.788 +- 0.056	2489
CNN classifier	0.547 +- 0.025	0.788	366 +- 18

- Precision = TP / TP + FP Recall = TP / TP + FN
- 7 times more precision !

model's ability to detect Positive samples

- Conventional :
 - 2489 out of 46948 events, including 201 true alpha decay
- CNN classifier:
 - 350 alpha-decay candidates, including 201 true alpha-decay

GNN for Particle tracking

- Graph neural network:
 - Operate on graph structured data
 - Graph = nodes that can be connected by edges \rightarrow
- GNN = CNN + network embedding
 - Generalization of convolutional neural network
 - CNN \rightarrow work on local spatial features
 - Networks & graph \rightarrow generalize to arbitrary object
 - CNN : conv filter \rightarrow locality
 - Graph : adjacency matrix \rightarrow object relationships
 - No grid structure: adjacency matrix

 \rightarrow Operations pass information from neighborhood

28

- Hypernuclear production in heavy ion collisions:
 - NN \rightarrow \wedge KN E_{th} ~ 1.6 GeV : Beam > E_{th} : available at GSI (2 AGeV)

- Coalescence of Λ in spectator fragment
 - same velocity than projectile: Lorentz Boosted
 - study Hypernuclei in flight

Hypernuclear study in WASA-FRS experiment:
 ⁶Li(@2GeV/u)+¹²C→³_ΛH,⁴_ΛH,nnΛ+K⁺+Fragments+Hadrons

31

• Study of Hypernuclei in our WASA-FRS experiment:

Generative AI & Object detection & Segmentation models for emulsion analysis

• Finding hypertriton :

27/01/2025

- Needs of training data ! But none has been found

 \rightarrow generating event from simulations !

- Problem : how to simulate nuclear emulsion ?!
- GAN : Generative adversarial networks

35

- Simulated hypertriton : GAN + Geant4
 - pix2pix (Image-to-Image Translation with Conditional Adversarial Nets)

Simulated emulsion :

Background (real) \rightarrow from emulsion plate

• Simulated event : hypertriton via GAN

A. Kasagi et al., NIMA, 1056 (2023) 168663

Simulated

Real

- hypertriton decay at rest : 3 He + π^{-} back-to-back
- Q-value fixed: length of pion 28 mm of ${}^{3}_{\Lambda}$ H vs 42 mm for ${}^{4}_{\Lambda}$ H

27/01/2025

- Search for hypertriton-like decay:
 - Mask R-CNN : Instance Segmentation

Backbone architecture: Networks inside Ex: ResNet, ResNeXt, Feature Pyramid Network

39

27/01/2025

- Search for hypertriton-like decay:
 - Training on simulated and generated event
 - "Real" images of simulated emulsion
 - Masks of the instance segmentation of the decay

Simulation

- Search for hypertriton-like decay:
 - Training on simulated and generated event \rightarrow done
 - Analyze the real emulsion images

 \rightarrow Give us the image and and mask – bounding box of what the algorithm found :

• Search for hypertriton-like decay:

A. Kasagi et al., NIMA, 1056 (2023) 168663

42

10 µm

27/01/2025

27/01/2025

C. Rappold – ML in Exp. physics

43

Detected by Mask R-CNN

Segmentation task to detect hit information

- Binary segmentation model:
 - Training from scratch: background or track

- Quantitative evaluation
- Noise reduction
- Datasize: 1/200

 → E07 image data
 150 PB → 750 TB

27/01/2025

C. Rappold – ML in Exp. physics

46

Segmentation task to detect hit information

100 µm

Raw data: 200 MB

Segmentation: 1MB

27/01/2025

Segmentation task to detect hit information

• 3D track reconstruction

27/01/2025

Any questions ?