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Nuclear lifetimes and transition strengths

➢Collective motion

➢Weisskopf estimate

Electronic fast timing

➢Experimental setup

➢Analysis method

Practical applications:

➢Time-of-Flight Positron Emission Tomography (ToF-PET)

➢Perturbed Angular Correlations (PACs) 

➢Proton therapy range verification
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Nuclear lifetimes and transition 
strengths
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Nuclear shell model
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Nuclear level scheme
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Nuclear level scheme
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Nuclear level scheme

7

• T1/2 lifetime or half-life. 
• Average time it takes for 

N nuclei (or excited 
states) to decay to 50% 
of its initial value



Bruno Olaizola, Nuclear fast timing 8

Nuclear level scheme
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• Level width, Γ

• Γ=ħ/τ

R.J. Charity, Eur. Phys. J. Plus (2016) 131: 63
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Nuclear half-life

The activity of the sample 
changes as: A(t) = A0 e –λt

From λ = decay constant, one 
can define τ= 1/λ, the mean 
lifetime 

The time for half of the nuclei 
to decay is called the half-
life:

t1/2 = ln 2 / λ = τ ln 2

N(t1/2) = N0 e –λt=N0e-ln 2=N0/2

Nuclear lifetime span over 35 
orders of magnitude (from fs
to Gy)

9
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Transition strength

10

𝐵 𝑀
𝐸𝜆, 𝐿𝑖 → 𝐿𝑓 =

1

2𝐿𝑖 + 1
𝐿𝑓 𝑀 𝑀

𝐸𝜆 𝐿𝑖
2
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Weisskopf estimates

11
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Weisskopf estimates

We measure B(XL) and compare to Weisskopf 
estimates

Gives us an idea if the transition can be 
described as single particle

Depend on T1/2, branching ratio, E and A 
(actually, radius R∝𝐴1/3)

All observables that can be measured

In most cases, T1/2 is the hardest

Strong dependence with E
➢ The lower the energy → the much longer the 

lifetime. Example for E2:

• E1= 100 keV→ τ1= 500 ps

• E2= 200 keV→ τ2= 15 ps
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Single particles are not enough

• A transition can be described as a 
single particle (de)excitation when 
B(XL)~1 W.u.

• Very few nuclei follow this rule 
(doubly-magic nuclei, mainly)

• This means that we need more than 
one nucleon excitation to explain 
what is happening

• Collective motions and deformation

13

B(E2)=1 W.u.
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Recommended upper limits

Atomic Data and Nuclear Data Tables 26, 1, 1981
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Recommended upper limits

Atomic Data and Nuclear Data Tables 26, 1, 1981

• By surveying a large number of transitions, RUL were 
proposed

• It is an orientation to assign multipolarity to transitions from 
measured B(XL)

• 40+ years old, could be outdated
• NNDC is currently working on a new compilation
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Deformation

16
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Collective motion

17

Rotation Vibration
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Deformation is a common phenomenon

Number of neutrons
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Experimental nuclear 
fast timing
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Experimental techniques

• Nuclear lifetimes span over 35 orders of magnitude!!!
• From below femtoseconds (10-15 s) to gigayears (~1020 s, or the 

age of the Universe)
• Each time range is studied with a different experimental 

technique

20

Technique Lower limit Upper limit

Chemical separation Hours ∞*

Electronic timing 10 ps (10-12) ∞*

Doppler 10 fs (10-15) 10 ps (10-12)

Lineshape 1 fs (10-15) 100 fs (10-15)

Coulex 0* ∞*

*Under very special circumstances
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How short is a picosecond?

1 picosecond = 10-12 seconds

That’s 0.000000000001 seconds

It takes photons (fastest particles in the universe) ~3.3 ps to travel 
1 mm in vacuum

When working in this time frame, the speed of light cannot be 
considered instantaneous anymore

Indeed, c is one of the main limitations

22
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Simplified nuclear electronic timing

23
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Signals

24

Technical Report for the Design, Construction and Commissioning of FATIMA, the FAst TIMing Array

Semiconductor
Scintillator

10 ns
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Constant faction discriminator

25

Wikicommons

How to determine when the signal 
arrives

Leading edge (threshold trigger)
➢ Faster

➢ Strong energy dependency (time walk)

Constant faction discriminator
➢ Slightly slower

➢ Greatly reduces energy dependency 
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Electronics

26

CFD

CFD

γ2

γ1

Start

Stop

TAC
Δt

• CFD: constant fraction 
discriminator

• TAC: Time to amplitude 
converted



Bruno Olaizola, Nuclear fast timing 27

Electronics

27

CFD
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Δt

• CFD: constant fraction 
discriminator

• TAC: Time to amplitude 
converted
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Time walk

Time difference between β and γ [ns]
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Time walk

Time difference between β and γ [ns]
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Bonus question

Time difference between β and γ [ns]
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Long lifetime

Time difference between β and γ [ns]
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Measuring gamma-rays
• Scintillators (like LaBr3(Ce)) are the fastest detectors nowadays

• The incident photon excites the crystal molecules

• They quickly de-excite emitting UV (usually)

• Secondary photons absoverd by the photocathode

• The electrons from the photoelectric effect give us the signal

• Photoelectric effect is more likely with UV rays

32
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Timing resolution
Timing resolution is the time-width of 
a prompt (τ~0 ps) signal

Scintillators crystals are a few cm long 
and wide

Light takes time bouncing inside the 
crystal (1 mm ~ 3.3 ps)

In meta-materials, timing resolution 
mainly depends on crystal size

33
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Convolution method

• Prompt part may be approximated to a Gaussian shape, down to 3 orders of 
magnitude

• Slope method may be used for T1/2 ~ timing resolution and above

• Fit of the timing distribution to a prompt response plus an exponential 
decay

• 𝐹 𝑡𝑗 = 𝛾 𝐴׬

+∞
𝑒−𝛿(𝑡𝑗−𝑡)𝑒−λ(𝑡−𝐴)𝑑𝑡

34
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Centroid shift method

35

2+ state in 200Hg
T1/2(literature)=46.4(4) ps
T1/2(experiment)=44(3) ps

200Hg
0+

2+

4+

T1/2
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The centroid of the time distribution will be 

given by:

C = τ
0
+τ

START
+τ

STOP
+τ

level

τ
0
=a constant delay of the setup, cannot 

be determined (in general)

τ
level

= Lifetime we want to measure

START

STOP

STOP

START

τlevel

C1
C2

Generalized centroid difference method

C1 = τlevel+τ0

C2 = -τlevel+τ0

ΔC=C1-C2= τlevel+τ0 –(-τlevel+𝜏0)=2τlevel

ΔC=2τlevel

C1C2

ΔC
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Relative PRD calibration curve

• Timing response 
calibration

• 152Eu commercial source
• Lifetimes are precisely 

measured
• Values are corrected by the 

literature lifetimes
• Uncertainty ~5 ps mainly 

from Compton background
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Compton correction

ATCT= APCP+ ACCc

CP=
ATCT−ACCc

𝐴𝑇−𝐴𝐶
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Practical applications:
PET-TOF
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Positron-electron annihilation

• Positron (e+) is the anti-particle of the electron

• If they touch, they annihilate E=mc2

• Mass of e-/e+ is 511 keV/c2

• Momentum conservation, two 511-keV photons are emitted is 
opposite directions

40
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18O(p,n)18F

p+

18O18Fn

Glucosa

 = 0

LOR

 =  0

LOR

Positron Emission Tomography (PET)

Courtesy of K. Abushab UCM-Spain

Positron Emission Tomography (PET)
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Positron Emission Tomography (PET)
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PET – Time of Flight (ToF)

43

t1

t2

t2-t1
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Increased resolution

44

GFN-UCM

With ToF Without ToF

ToF greatly increases resolution

Allows for earlier detection

Development of detectors and 
electronics

Goal of 10 ps resolution

Lunabrain Project in Madrid

https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.823292/full
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Practical applications:
Perturbed Angular Correlations
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Multipole radiation

46

Monopole

Quadrupole

Octupole
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PAC Spectroscopy

47

(www.uni-leipzig.de)

γ - γ angular correlation
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Perturbed angular corellation

48

Now if the electric/magnetic field is created by 

other atoms in a molecule then the Perturbed γ

- γ angular correlation is a very sensitive probe!

(www.uni-leipzig.de)

• This technique requires detectors with good 
energy resolution and excellent timing 
resolution.

• LaBr3 scintillators are the ideal choice.
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PAC Spectroscopy reveals coordination chemistry

49
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Radiopharmaceuticals

50

Radionuclide

Chelator

Biomolecule

Specific target

Desire is to place the radionuclide in a carrier molecule which 
will deliver it directly to the target cancer cells. Can dream of 
“Designer molecules”
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Targeted Radionuclide Therapy (TRT)

51

• Pouget J.-P. et al. (2011) Clinical 
radioimmunotherapy—the role of 

radiobiology Nat. Rev. Clin. Oncol. 
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PAC Spectroscopy characterizes protein-protein interactions

52

Wernimont et al. Nature Structural Biology  7, 766 - 771 (2000)

The metal ion binding site changes with pH level
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Practical applications:
Proton therapy range verification
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Bragg curve

54
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Protontherapy

55
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Range verification

56

C Burbadge et al 2021 Phys. Med. Biol. 66 025005
1- No peaks → proton energy too low

• We insert a metal foil (Mo) in front of the tumor
• Nuclear reaction with p+ emits characteristic gamma rays
• Ratio between peaks depends on p+ energy 

2- Good peak ratio→ Bragg peak next metal 
marker, correct energy

3- Wrong peak ratio→
Bragg peak beyond metal 
marker, too high energy
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Range verification

57

Protons stop before metal foil

No nuclear reaction

Only tissue background

Metal foil
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Range verification

58

Bragg peak at the metal foil

Maximum proton energy induces nuclear reaction

Characteristic gamma ray appears

Metal foil
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Range verification

59

Bragg peak beyond the metal foil

Only partial proton energy induces nuclear reactions

Different gamma peak ratio

Metal foil
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Range verification

Interaction of p+ with tissue will create large gamma-ray fields 

Rates on the detectors well over 50 kHz

Requires extremely fast detectors, such as LaBr3

The technique allows for online range verification

Sub-mm precision achieved

60

C Burbadge et al 2021 Phys. Med. Biol. 66 025005
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Summary

• Lifetime measurement is one of the most 
powerful probes we have to study nuclear 
structure

• Scintillators allow to measure timing down to 
~10 ps (10 x 10-12 s)

• The fast-timing method has practical 
applications:

• Protein structure and interaction

• Medical imaging (PET-ToF)

• Proton therapy range verification

61
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Any questions?

You can always contact me at 
bruno.olaizola@csic.es
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Pile up

63
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PAELLA at TRIUMF

64

Perturbed Angular corrELations Labr Array
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𝐵 𝑀
𝐸𝜆, 𝐿𝑖 → 𝐿𝑓 = ෍

𝜇𝑀𝑓

𝐼𝑓𝑀𝑓 𝑀 𝑀
𝐸𝜆, 𝜇 𝐼𝑖𝑀𝑖
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