γ-ray spectroscopy and the measurement of excited-state lifetimes

Andrea Jungclaus

Instituto de Estructura de la Materia, CSIC – Madrid, Spain

Thanks to Caterina Michelagnoli (ILL) for some material !

Some of the γ -ray spectrometer in use today

We have many different since which is the "best" depends on the experiment we would like to do (and the money we have) !

- energy resolution
- time resolution
- photopeak efficiency
- peak-to-total P/T

Andrea Jungclaus, Master 2025

Energy resolution: From NaI to Ge detectors

One of the first rotational bands observed following α -induced reactions:

Use of Ge detectors: Breakthrough in nuclear structure physics FWHM ~2 keV at 1.3 MeV

 γ -ray spectrum of an air filter with radioactive aerosols, whose activity stems from the atmospheric nuclear wapon experiments between 1958 und 1963.

Compton-suppressed Ge detectors

peak-to-total ratio P/T: area of photopeak relative to total area

 $P/T = 0.2-0.3 \implies 0.5-0.6$

Passive shielding – throws away "bad" events !

Compton-suppressed versus tracking array

even better P/T higher efficiency smaller $\Delta \theta \Rightarrow$ reduced Doppler broadening

Evolution of γ -ray spectroscopy

Angular distributions and correlations

Relevant quantities for the comparison with theoretical predictions:

- excitation energy E
- spin J
- parity π
- lifetime τ
 (transition probability)
- magnetic dipole moment µ
- electric multipole moment Q_L

<u>Measuring γ-ray</u>

energy angular distribution/corr. linear polarization

Angular distributions and correlations

A. Illana et al., Physics Review C 89, 054316 (2014)

The higher the segmentation, the higher is the sensitivity to angular distributions/correlations – and therefore also magnetic and quadrupole moments !

γ -ray emission from moving ions: The Doppler effect

γ -ray emission from moving ions

In-beam energy resolution at relativistic energies

200 MeV/u beam on a 4 mm Be secondary target, $\langle \beta \rangle = 0.55$, $\Delta \beta = 0.016$, $E_{\gamma} = 1$ MeV

- Why do we perform γ-ray spectroscopy ?
- Characteristic parameters of γ-ray spectrometer:
 What do we need for which type of experiment ?
- Short history of instrumental developments
- Why do we need γ-ray tracking arrays ?
 In-beam energy resolution
- Measurement of excited-state lifetimes: Doppler-shift techniques

Lifetimes of excited states in atomic nuclei

Doppler-shift as a clock if β or θ depend on t !

27/1/25

 $1 - \beta \cdot \cos \theta$

Basic principle of all Doppler techniques

GAMS4 energy resolution and lifetime sensitivity

Doppler-shift attenuation method (DSA)

The lifetime of the excited state is compared with the slowing-down time of the emitting nucleus in the stopper

Typical lifetime range: $\tau = 0.1$ -1.5 ps

DSA example from real life

Fig. 1. Lineshape fits for the $2_1^+ \rightarrow 0^+$ transition in ¹¹⁴Sn observed in the Ge crystals at the designated polar angles with respect to the beam axis, in coincidence with C ions.

Fig. 2. Lineshape fits of the $2_1^+ \rightarrow 0^+$ transitions in ^{116,118,120,124}Sn in the spectrum observed in the Ge detectors positioned at ±65° from the experiment performed at the Australian National University [14]. Stars label two contaminating transitions in ¹⁰⁶Pd and ¹¹⁰Pd.

A. Jungclaus et al., Physics Letters B 695, 110 (2011)

Recoil Distance Doppler-shift technique (RDDS)

The intensities of the two peaks in the γ -ray spectrum vary as a function of the target-to-stopper distance.

Typical lifetime range: $\tau = 1$ ps -3 ns Typical velocity range: $\beta < 0.1$

RDDS example from real life

A. Jungclaus et al., Physics Review C 60, 014309 (1999)

Doppler-shift techniques: Some comments

Observed and non-observed indirect population of the excited state of interest \implies effective lifetime measured

With radioactive ion beams, we need to be careful not to stop the beam in the focus of the γ -ray spectrometer.

One may need to identify the reaction product behind the target \Rightarrow differential plunger

Uncertainties in the description of the slowing-down process (i.e., in the stopping powers)

Variety of different techniques available, many of them based on $\gamma\gamma$ coincidence information.

From individual detectors to γ -ray tracking arrays

Doppler-shift attenuation (DSA) with tracking arrays

Difficult to disentangle !

APCAD—Analysis program for the continuous-angle DSAM* Christian Stahl*, Jörg Leske, Marc Lettmann, Norbert Pietralla Institut für Kernphysik, Technische Universität Darmstadt, Germany Two-dimensional spectrum, continuous angle:

Overlapping lineshapes measured over a broad range of detection angles allows for a sensitive extraction of the individual level lifetimes.

This is a simulation, but ...

DSA with the AGATA demonstrator

Andrea Jungclaus, Master 2025

dashed-dotted line. Contaminants are drawn in gray. See text for details.

Experiments with radioactive beams at fragmentation facilities (RIBF, GSI/FAIR, FRIB ...)

 $\beta = 0.5 \implies v \sim 0.15 \text{ mm/ps}$

Two effects:

- changing β during flight though the target
- changing θ behind the target

23

Doppler-shift techniques at relativistic energies

Doppler-shift techniques at relativistic energies

Jaime Acosta et al., in preparation

Doppler-shift techniques at relativistic energies

Position resolution of AGATA provides unprecedented sensitivity to excited-state lifetimes !

Jaime Acosta et al., in preparation

Lifetimes of excited states in atomic nuclei

Doppler-shift as a clock if β or θ depend on t !

27/1/25

 $1 - \beta \cdot \cos \theta$

Current status of measured 2_1^+ energies and lifetimes

Still a lot of work to be done. And these are only the first excited 2⁺ states !

Quantities determined using γ -ray spectroscopy

Relevant quantities for the comparison with theoretical predictions:

- excitation energy E
- spin J
 - parity π

lifetime τ
 (transition probability)

- magnetic dipole moment µ
- electric multipole moment Q_L

<u>Measuring γ -ray</u>

energy angular distribution/corr. linear polarization

large variety of experimental techniques

Our playground: The chart of nuclides

New generation of radioactive beam facilities (FAIR, FRIB, RIBF Upgrade ...), new tracking γ -ray spectrometer: We will have a lot of fun in the coming years !