Introduction

Process mediated by the weak interaction between two isobars

$$\beta^{-}$$
 (N,Z) ---> (N-1,Z+1) + e⁻ + v
 M(Z) - M(Z+1) = E_β + E_ν + Ex

M(Z) - M(Z-1)= $E_{\beta^+} + E_{\nu} + 1022 + Ex$

Beta Delayed Particle Emission

Planning and References

Beta delayed Particle emission

- Mechanisms of Breakup
- Analysis technique

References:

"Particle Emission from Nuclei" Ed. D.N. Poenaru & M.S. Ivaçcu CRD 1989 Vol I, II, III
B. Blank and M.J.G. Borge, Prog Part and Nuc. Phys 60 (2008) 403
M. Pfützner, L.V. Grigorenco, M. Karny & K. Riisager, Rev. Mod. Phys, ArXiV:1111.0482
Euroschool on Exotic Beams, Lectures Notes:
"Decay Studies of N~Z Nuclei", E. Roeckl, École Joliot-Curie de Physique Nucleaire, 2002

Reminder

Spectra β^{\pm}

Expand in a large E-scale E_{β} -= 2,6 keV (¹⁸⁷Re, β^{-}) E_{β} -= 22800 keV (²²N, β^{-}) Q=M(Z,N) - M'(Z+1,N-1) $m_ec^2 = T_{M'}$ + Te +Tv N(p) $\propto p^2$ (Q-Te-Tv)

Half-life

CSIC

Emission of delayed particles

$$P_p = 6 \ 10^{-6} \ (^{151}Lu)$$
 to 100 % (³¹Ar)

$$P_n = 5.5 \ 10^{-4} \ (^{79} \, \text{Ge}) \text{ to } 99 \ \% \ (^{11} \, \text{Li})$$

³⁵ Na, $T_{1/2} = 1,5$ ms ⁵⁰V, $T_{1/2} = 10^{17}$ y; (¹¹⁵In, 10¹⁴ y ; ¹¹³Cd, 10¹⁵ y) β p, β2p, β3p, ...βn, β2n ...

Classification of β-decay transitions

 L_{β} >0 and/or $\pi_{i}\pi_{f}$ =-1

Practical example

$$t = T_{1/2}^{\beta_i} = \frac{T_{1/2}^{\exp}}{P_{\beta_i}}$$

$$P_{\beta_i} = \eta [I^{tot} (out) - I^{tot} (in)]$$

$$I^{2} = \frac{\alpha_1(M_1) + \delta^2 \alpha_1(E_2)}{P_{\beta_i}}$$

$$P_{\beta_i} = \eta [I^{tot} (out) - I^{tot} (in)]$$

$$I^{2} = \frac{\alpha_2(M_1) + \delta^2 \alpha_1(E_2)}{P_{\beta_i}}$$

$$I^{(N)} = \frac{\alpha_1(M_1) + \delta^2 \alpha_1(E_2)}{P_{$$

Maria J.Gª Borge, Beta decay studies

Beta Transitions

Decay properties of exotic nuclei

Beta-proton emitters

✓ More than 160 precursors identified

 \checkmark For every element up to Z = 73 at least one proton precursor

 \checkmark The βp spectrum depends on the Z and A of the precursor and differs in the different mass region due to differences in level density in the Q-Sp window

✓ Properties of βp well understood → large variety of spectroscopic information

$^{32}Ar(Z=18, N=14) \rightarrow ^{32}CI(Z=17, N=15)$

- By $\beta p \rightarrow$ study up to 8153 keV \rightarrow 73% of energy window
- 22.6% feeding IAS→ logft = 3.19

$$\Gamma_{p} / \Gamma_{\gamma}(IAS) = 11.2(11)$$

$$\Gamma = \Gamma_{p} + \Gamma_{\gamma} = 20(5) \text{ eV}$$

The width of the IAS is very narrow as the proton emisión is isospín forbidden, facilitating the emisión of M1 transition of the 5.046 MeV IAS $B(F) = T(T+1)-T_{zi}T_{zf} = 2x3-(-2)(-1)$ = 6-2 = 4Predicted mixing with 0⁺ T= 1 states \rightarrow No strong feeding observed to states nearby. Closest E = 5425 keV (ΔE = 379 keV)

CSIC

Electron-Neutrino Correlations (pp emitters)

✓ βν correlation depends of the type of the transition

✓ Important probe of the nature of weak interaction

The V-A character of β -decay was determined by measuring the recoil energy spectrum of ⁶He [Johnson et al, PR132(63)1149]

- Isospin mixing in Fermi decays
- Contaction sing
 32Cl
 31S
- Lever interferences
- Spin assignment
- Excitation energies

Schardt & Riisager, Z. Phys. A 345 (1993) 265

Adelberger & Garcia, Hyp. Int 129 (2000) 237

βv correlation studies: Search for New Physics

• If βp emitter \Rightarrow measurement of e-v correlation \Rightarrow F/GT nature of transition from the broadening of proton peak.

• Limit for scalar component in beta decays $M_S \ge 4.1 M_W$

Adelberguer et al., PRL (1999)

32,33 Ar – β decay

E-resolution = 8 keV

Angular correlations between e+ and vin the Fermi and GT transitions \rightarrow the Doppler effect larger recoil broadening of the proton lines for Fermi than for GT decay (Emission before the recoil daughter comes to rest)

 $E^* = Ep(CM) + Sp(33CI) = Ep\frac{\Delta M(32S) + \Delta M(p)}{\Delta M(32S)} + Sp(33CI)$

The decay of ³¹Ar

CSIC

β -delayed 2p emission from ³¹Ar

Diagonal from decays via single intermediate state from many initial states fed in beta-decay

$$E_1 = \frac{M_{D1}}{M_{D1} + m_p} Q_1$$

2p

IAS

β

β

³¹Ar

²⁹S+2p

Зр

2p

β

IAS

2.42 1.95 1.39

p

Stable ²⁸Si+3p

2p emission from ³¹Ar IAS

Individual proton projections from β 2p in ³¹Ar

In sequential two-proton emission the energy of the first proton is

$$E_1 = \frac{M_{D1}}{M_{D1} + m_p} Q_1$$

 $M_{D1} = M(^{30}S)$

$$Q_1 = E\left({}^{31}Cl\right) - E\left({}^{30}S\right) - S_{pl}$$
$$E'_2 = \frac{M_{D2}}{M_{D2} + m_p}Q_2$$

$$Q_2 = E\left({}^{30}S\right) - E\left({}^{29}P\right) - S_{p2}$$

$$E_{2} = E_{2}' + \left(\frac{m_{p}}{M_{D1}}\right)^{2} E_{1} - \frac{m_{p}}{M_{D1}} \sqrt{E_{1}E_{2}'} \cos \theta_{2p}$$

Decay of the IAS of ³¹Ar (Z =18,N=13)

E_{IAS} = 12322(2)(50) keV from Q2p

 $Q_{FC} = E_{IAS} + \Delta Ec - \Delta np$ $\checkmark \Delta Ec = 1448.8 [ZA^{-1/3}] - 1026.3 \text{ keV}$ Antony & Pape [ADNDT 34 (86) 279] ✓ ∆Ec =7045 keV Leaving the coef. free and using exp. **Coulomb energy shifts** between ^{32,33,34}Cl and ^{32,33,34}Ar $\Delta Ec = 6950(90) \text{ keV} \implies$ $Q_{rc} = 18,49(11) \text{ MeV}$ $f(E_{\beta | AS})t_{| AS} = 6145(4) s / [B(F) + B(GT)]$ b.r.(IAS) = $T_{1/2} / t_{IAS}$ $B(F) = [T(T+1)-T_{i}T_{f}]\delta_{if} = 5$ Expected b.r. (IAS) = 4.35(31)%

Fynbo et.al. NP A677(2000)38

Mapping of Neutron Deficient nuclei 22 < Z < 28

From peaks to continua (Hardy, Cargese, 1976)

βp explored high excitation energy in the daughter => individual transition are not longer resolved

$$I(Ep) = \sum_{i,f} f(Z,Q-E^{i})S_{\beta}(E^{i}) \frac{\Gamma_{p}^{ij}}{\Gamma_{p}^{i}+\Gamma_{\gamma}^{i}}$$

To fit the proton spectrum average of the above quantities are considered.

Giovinazzo et al, NPA674 (2000) 394

CSIC

βp + X-Ray ratio strongly constraint the level density distribution

Good estimate of proton and gamma widths for exotic nuclei of interest for nucleosynthesis The Porter Thomas distribution accounts of the fluctuations observed in the spectrum

²¹ IEM

Exotic Radioactivities

2p-correlation measured for first time in ⁴⁵Fe

CSIC

Beta-delayed Neutron Emission

Beta-delayed Neutron emitters

About 220 cases measured, Mainly $T_{1/2}$ and P_n -values Spectroscopy hampered by Detection system.

CSIC

Compilation for fission products 26 < Z < 58, Pfeiffer, Kratz, Möller, Prog. Nucl. Energy 41(2002)39

$$1/T_{1/2} = \sum_{E_i \ge 0}^{E_i \le Q_{\beta}} S_{\beta}(E_i) \times f(Z, Q_{\beta} - E_i)$$

$$P_n = \frac{\sum_{B_n}^{Q_{\beta}} S_{\beta}(E_i) f(Z, Q_{\beta} - E_i)}{\sum_{0}^{Q_{\beta}} S_{\beta}(E_i) f(Z, Q_{\beta} - E_i)}$$
Kratz-Hermann formula

Beta-Delayed Neutron-Emission Where C is the parameter of pairing, depending of even or odd character of daughter nucleus

	a	b	regr	а	b	χ2
$29 \le Z \le 57$	85.16	3.99	0.83	80.58	4.72	78.23
				± 20.72	± 0.34	

Measurement of Neutrons & βn

- Long Counter: reduced energy to termal values by scattering in parafine.
- Time-of-Flight, giving signals in plastic scintillator. Energy of neutron deduced.
- βn can be deduce by obsevation of γ-ray transition in the beta-delayed neutron daughter.

Talk on Neutron deteccion by JL Tain

Beta decay of an exotic n-rich nuclei

Beta delayed particle emitters

Decay Scheme \rightarrow Structure Information (N= 20)

S. Nummela et al PRC64 054313 (2001)

Intruder states & Effective interaction in sd-pf shell

β n from ^{133g}In(9/2⁺) and ^{133m}In(1/2⁻) \rightarrow ¹³³Sn study

¹³³In is a key nucleus for

- Astrophysics due to its placement on the r-process bottleneck regions in most scenarios.
- its proximity to the doubly magic ¹³²Sn (50 protons and 82 neutrons) offers a uniquely simple β-decay system to validate nuclear theories.

133mIn₈₄

N = 82

h11/2

99/2 **9**

g7/2

339In₈₄

High resolution laser tuning allowed Separate the contribution from gs and isomer ¹³³In

Neutron ToF Spectrum from VANDLE

-

Neutron Detection systems

Halo nuclei

CSIC

✓ Energy threshold effect
✓ Highlight by nuclear reactions
✓ Effects in beta decay

Beta-delayed deuterons

Beta decay of an exotic nuclei

¹¹Li, gamma rays

¹¹Li βd spectrum finally measured @ TRIUMF!!

DSSSD 16x16 mm², 70μm thick 48x48 strips, 300 μm, 2304 pixels J. Büscher et al., NIM B 266 (2008) 19

CSIC

Maria J.Gª Borge, Beta decay studies

Stringent test of Nuclear Models

✓ Test Isobaric Multiplet Mass eq. $M(A,T,T_z) = a + bT_z + cT_z^2 + \delta(dT_z^3 + eT_z^4)$ ✓ If 2-body forces responsible of charge dependence in nuclei IMME to T_z^2 ✓ $B_F = T(T+1) - T_{Zi}T_{Zf}$ ✓ If strength to IAS $\neq B_F \iff$ Mixing

✓ Impressive reproduction of the B_{GT} distribution by Shell Model calculation

 Quenching factor close to one, sensitive to the placement of the GTGR

Kinematic identification of β t emission in ¹¹Li

Maria J.G^a Borge, Beta decay studies

CSIC

Viewing B-delayed triton emission

New branch β n from this state confirming the character of super-allowed transition

CSIC

Beta-delayed Fission in the Pb-region

Beta-alpha emission

- Ba-Identified first in Natural radiactivity
- Ba favoured in light nuclei with Tz = -1: ⁸B, ¹²N, ²⁰Na...
- In cases were both \u03b8a and \u03b8p are allowed =>\u03b8p dominates due to barrier penetrabilities
- Branches of $\beta a > 1\%$ are only observed in nuclei A < 20 and ¹¹⁸I
- Some of these states are of astrophysical relevance
 - For instance the ${}^{16}N(\beta a)$ helped to elucidate the ${}^{12}C(a,\gamma){}^{16}O$
- βpα or βαp is a decay mode open for ⁹C, ¹³O, ¹⁷Ne, ²¹Mg and ²³Si
 Only identified ⁹C and ¹⁷Ne

⁹C special as the daughter is unbound to p-emission. Expectacular asymmetry in some of the mirror transitions with ⁹Li

¹⁷Ne astrophysical relevance to learn about the E2 capture rate in stellar ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

Beta-decay of ¹⁷Ne

2

4

6

Energia (MeV)

8

CSIC

1/2-

3/2-

10

- Separation of βp , $\beta \alpha$ channels with ΔE -E and ToF techniques, allowing independent analysis of the two spectra.
- Bp and Bα branches confimed previous values with higher precision.
- Treatment of the full proton spectrum using R-Matrix.
- Feeding to subthreshold ¹⁶0 states, study of their partial α-widths on progress.

Beta Delayed Particle Emission

$$W(heta) = 1 + a rac{p_eta}{E_eta} cos(heta_{eta
u}), \qquad with \quad a = rac{g_V^2 B_F - rac{1}{3} g_A^2 B_{GT}}{g_V^2 B_F + g_A^2 B_{GT}}.$$

If the decay is followed by particle emission, the recoil of the daughter shifts the energy of the delayed particle by about 10 keV that it is easy to measure.

 \checkmark First used to deduced the nature of the decay of $^{8}\text{Li}\ \beta2\alpha$

$$W = 1 + \frac{1}{2}(3a - A)\frac{p_{\beta}}{E_{\beta}}\cos\theta_{\beta\nu} + \frac{3}{2}(A - a)\frac{p_{\beta}}{E_{\beta}}\cos\theta_{p\beta}\cos\theta_{p\nu}$$
$$A = \frac{g_V^2 B_F - (\frac{1}{3} + \frac{2}{30}\tau\Theta)g_A^2 B_{GT}}{g_V^2 B_F + g_A^2 B_{GT}} \quad \Theta\tau \neq 0 \quad \begin{cases} \mathsf{GT} \\ \mathsf{Ip} \neq 0 \end{cases}$$

 $\beta - \nu$ correlations allow to extract Spins: ³¹Ar Fermi / GT character Intrinsic widths of levels Final state (gs/excited) of delayed particle The energy shift in the delayed particle averaged over the neutrino angles

$$< t >_{\nu} = -k\cos\theta_{p\beta} \left(1 + \frac{1}{3}A\frac{p_{\nu}c}{E_{\beta}} \right) p_{\beta}c$$

$$(1) \int_{2000}^{2000} \int_{1}^{31}Ar \int_{1}^{1} \int_{1}^{4} \int_{1}^{4} \int_{1}^{4} \int_{1}^{3170} \int_{1}^{33}Ar \int_{1}^{4} \int_{1}^{4}$$

Thaysen et al, Phys. Lett B 467 (1999) 194

¹¹Li (βd) @ ISOLDE

CSIC