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What is Machine Learning ?

A subset of artificial intelligence in the field of computer science that often uses 
statistical techniques to give computers the ability to "learn"with data, without 
being explicitly programmed

● Definition "to learn" from dictionary: 

"Gain knowledge or understanding of, or skill in by study, instruction or 
experience"
– Learning a set of new facts
– Learning how to do something
– Improving ability of something already learned

Samuel Arthur –1959 –ML in Checkers
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What is Machine Learning ?

● Why learning ?
– Machine learning is programming computers to optimize a 

performance criterion using example data or past experience

– Learning is used when :
● Human expertise does not exist
● Humans are unable to explain their expertise
● Amount of knowledge is too large for explicit encoding
● Solution changes in time
● Relationships can be hidden within large amounts of data
● Solution needs to be adapted to particular cases
● New knowledge is constantly being discovered by humans
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Can we write a computer program that does that?

The automatic extraction of semantic information from raw
signal is at the core of many applications (object recognition, 
speech processing, natural language processing, planning, etc). 
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● The (human) brain is so good at interpreting visual information 
that the gap between raw data and its semantic interpretation is 
difficult to assess intuitively:

This is a mushroom.
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This is a mushroom.
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This is a mushroom.
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● Extracting semantic information requires models of high 
complexity. 
– Cannot write a computer program that reproduces this process.
– However, can write a program that learns the task of extracting 

semantic information. 
● A common strategy to solve this issue consists in:

– Defining a parametric model with high capacity
– Optimizing its parameters by “making it work” on the training data

Learning → tuning the many parameters of the model 
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Machine learning is ...

● Finding patterns or associations that can be used to make 
prediction

● ML is general term → many algorithms / methods
● Big Picture Goal : Learning useful generalizations

Prediction
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Fields cross sections
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Statistics vs Machine Learning

● Largely overlapping fields:
– Both concerned with learning from data
– Philosophical difference on ‘focus’ and ‘approach’.

● Statistics: 
– Founded in mathematics
– Drawing valid conclusions based on analyzing existing data.

● Making inference about a ‘population’ based on a ‘sample’
● Tends to focus on fewer variables at once.
● Precision and uncertainty are measures of model goodness.

● Machine Learning:
– Founded in computer science
– Focused on making predictions or seeking patterns (generalization).

● Often considers a large number of variables at once.
● Prediction accuracy to measure model goodness.
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Classic example or has become a classic 

● Recognition of handwritten digits
– MNIST database (Modified National Institute 

of Standards and Technology database)
– 60k training images and 10k testing images 

labeled with correct answer
– 28 pixel x 28 pixel
– Algorithms have reached "near-human 

performance"
– Smallest error rate (2018): 0.18%

https://en.wikipedia.org/wiki/MNIST_database

https://en.wikipedia.org/wiki/MNIST_database
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Image recognition

● ImageNet database:
– 14 million images, 22,000 categories
– Since 2010, the annual ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC): 1.4 million images, 1000 categories
– In 2017, 29 of 38 competing teams got less than 5% wrong

https://www.tensorflow.org/tutorials/image_recognition
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ImageNet: Large Scale Visual Recognition Challenge

● Error rate in percent:

https://arxiv.org/pdf/1703.09039.pdf
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Further progresses: some illustrative examples

Object detection and segmentation
K. He et al., Mask R-CNN (2017) arXiv:1703.06870 
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Further progresses: some illustrative examples

Data generation 
M. Arjovsky et al, Wasserstein GAN, (2017) arXiv:1701.07875
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Further progresses: some illustrative examples

Large Language models

R. Rombach et al. Stable diffusion (2022) 
ArXiv:2112.10752

OpenAI, ChatGPT (2022)
https://openai.com/models/gpt-3/

a photograph of an astronaut riding a horse

Diffusion model
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Some successes and unsolved problems in AI

● From a textbook in 2020:
M. Woolridge,

The Road to Conscious Machines

What was done in last 4 years !

● Image recognition
● Speech recognition
● Recommendation systems
● Automated translation
● Chatbots based on Large Language Models
● AI agents
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Types of Machine learning

Unlabeled Data
Labeled Data
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Unsupervised learning

● Important aspects :
– No Labels or targets
– No feedback
– Find hidden structures
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● Main algorithms:
– Clustering 

● Hierarchical cluster analysis
– Needs one metric (||.||2) 

– linkage criteria: d between clusters as a function of the d between 
observations ( complete-linkage clustering                                   )

Unsupervised learning

max {d (a ,b):a∈ A ,b∈B }
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Unsupervised learning

● Main algorithms:
– Dimensionality reduction → Several aspects

● high-dimensional datasets & the “curse of dimensionality”
– When dimension UP, volume space unit hypercube UP, dataset become very 

sparse → problematic for statistics significance 

● 1D, unit interval & 100 uniformly distributed sample: distance spacing is 10-2 
● 10D unit hypercube, for same lattice spacing needs 1020 samples. 

● Reduce dimension of dataset 

→ Feature extraction: pre-processing steps for other algorithms

→ Data visualization: sometimes it is nice to also see the data 
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Supervised learning

● Important aspects :
– Labeled data
– Direct feedback
– Predict outcome
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Example : Spam detection

● Naive approach
– Observe what is a spam and 

detect recurrent patterns
– write an algorithm of these 

patterns
– If a new email contains these 

patterns then classify it as a 
spam

– iterate until convergence ● Complex task
● High nb of rules
● Difficult to update
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Example : Spam detection

● Machine learning
1. A ML spam filter 
automatically learns relevant 
patterns
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Example : Spam detection

● Machine learning
1. A ML spam filter 
automatically learns relevant 
patterns
2. Automatic adaptation
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Example : Spam detection

● Machine learning
1. A ML spam filter 
automatically learns relevant 
patterns
2. Automatic adaptation
3. Can help humans to learn 
→ Data Mining
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Supervised learning

● Workflow

● Instance: A specific observation of data.

● Feature: An measurable property of 
instance. 

● Criterion/Outcome: The feature that you 
want to predict.

● Model: Representation or simulation of 
reality. Typically a simplification based on 
assumptions
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Supervised learning

● Main algorithms:
– Decision Trees :

● The criterion is modeled as a 
sequence of logical TRUE or FALSE

● Recursively partitions the feature 
space such that the samples with the 
same labels or similar target values 
are grouped together.

● Minimize the impurity:

G= N
l e f t

N
H (Set l e f t )+

N r i gh t

N
H (Set r i g ht )
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Supervised learning

● Main algorithms:
– Artificial neural network

● The biological inspiration: the neuron
● C. elegans (roundworm):

– 302 neurons
– with ~ 25 synaptic connections

● Human brain:
– 1011 neurons
– with ~ 7000 synaptic connections

● Weighting Inputs signals
● Passing through an activation  
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Perceptron 

● Idea already from Rosenblatt, 1954:

● Perceptron: designed for image recognition
– It was first implemented in hardware with 400 

photocells, weights = potentiometer settings
– Based on the first mathematical model of a 

biological neuron of McCulloch–Pitts (1943)
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Improvements on the concept

● Non-linear transfer via activation function:

● Example for h: sigmoid
● Non-linear activation function: when feature 

space is not linearly separable
● linear activation functions is just a perceptron

 

Logistic Sigmoid
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Feed Forward Neural Network

Hidden layer
Composed of neurons

superscripts indicates layer number

Straightforward to generalize to multiple hidden layers
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Try in the browser

https://playground.tensorflow.org/
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Howto ?

● Network training:
– An optimization problem: Find optimal weights to solve my problem

→ Need of a loss function on which we can action to find optimal
● Example: Squared error loss (regression), Cross entropy (classification)

– Usage of gradient descent  
– Example of a loss landscape of a modern artificial neural network:

H. Li et al.
https://papers.nips.cc/paper_files/paper/2018/hash/
a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
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Demystify neural networks

● Full implementation of training of 2-layer NN :
1000

100

10

Optimization part: 
gradient descent 
via “back propagation”

2
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Example of a training

Data Model
(x,y)

Activation (25 n)

Activation (50 n)

Activation (50 n)

Activation (25 n)

Color (R,B)
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Step by step evaluation of the training
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Neural Network Decision Boundaries
One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization
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Deep Neural Networks

● As data complexity grows, need exponentially large number of  neurons in a single-
hidden-layer network to capture all structure in data

● Deep neural networks factorize the learning of structure in data across many layers:

– Universal approximation theorem (1989):
● Challenges: Hard and slow to train & risk of overtraining

http://neuralnetworksanddeeplearning.com

https://link.springer.com/article/10.1007/BF02551274
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Cooking recipe in ML

● Get data (loads of them) & good hardware
● Algorithm to choose ?

– Structured data: "High level" features that have meaning
● feature engineering + decision trees / Random forests / XGBoost

– Unstructured data: "Low level" features, no individual meaning
● deep neural networks / images → convolutional NN

● But pitfalls to be aware of:
– Data quality : Garbage In → Garbage Out / Missing data ?
– Underfitting / Overfitting
– Simplicity don’t imply better generalization
– Appropriate evaluation metric
– Mistaking correlation for causation & confounding variables
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Learning resources

● Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep 
Learning, free online

● Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and 
Thomas B. Schön, Machine Learning – A First Course for 
Engineers and Scientists

● Simon J.D. Prince, Understanding Deep Learning

● Kevin Patrick Murphy, Probabilistic Machine Learning,

● Aurélien Géron, Hands-On Machine Learning with Scikit-Learn 
and TensorFlow

https://www.deeplearningbook.org/

https://smlbook.org/

https://udlbook.github.io/udlbook/

https://probml.github.io/pml-book/
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Useful libraries

● scikit-learn, https://scikit-learn.org/
● PyTorch, https://pytorch.org/
● TensorFlow, https://www.tensorflow.org/
● XGBoost, https://xgboost.ai/

https://scikit-learn.org/
https://pytorch.org/
https://www.tensorflow.org/
https://xgboost.ai/
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Any questions ?

christophe.rappold@csic.es


