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In experimental science we try to draw some conclusions on a theoretical 
construct (model, hypothesis, parameter,…) from the results of one or 
more experimental measurement: 
•  Experimental results are uncertain (i.e. the repetition of the same 
experiment gives different numerical results; different experiments give 
different results): how can we then characterize experimental data? 
•  How can we then infer something from data? 

MODEL 
HYPOTHESIS 

MEASUREMENT DATA 

inductive inference 

deductive inference 

PROBABILITY 

STATISTICS 

This sounds a bit philosophical 





We want to answer these questions: 
•  How should we quantify the uncertainty on the measurement 

of certain parameter? 
•  How this uncertainty depends on other parameters used to 

obtain the result? 
•  If several parameters are obtained simultaneously from the 

same data how are their values correlated ? 
•  Do the results show a trend deviating from the expected ? 
•  How should we design a measurement in order to minimize 

uncertainties? 



• The repetition of a measurement under the same conditions usually 
leads to different outcomes: uncertainty

• The difference between measurement result and “true” value: error
• If the conditions were really the same, the variations of the result can be 

related to the statistical nature of physical processes: statistical 
uncertainty (quantifiable)

• If the conditions were actually varying between measurements (but this 
fact was unknown to us): systematic uncertainty (unknown)

• If the measurement was faulty this could introduce a bias in the result: 
systematic deviation (unknown)

• If the result of the measurement depends on not so well known 
parameters: systematic uncertainty (quantifiable)

• We are assuming that the measurement has enough precision to allow 
distinguishing these variations

• The accuracy on the other hand measures the deviations of the 
measured value from the true value

Vocabulary: uncertainty, error, precision, accuracy

incertidumbre

precision

“exactitud”



Systematic error 
Systematic uncertainties 
Statistical uncertainties 



In nuclear and particle physics we are dealing with counting experiments: 
we register the number of  counts in a given detector, produced by particles 
of a given type at a given time with a given momentum and under some 
other conditions. From this and other detector related information we obtain 
the requested data. 

Examples of primary questions in NP and PP experiments : 
•  determine the amount of a radioactive isotope on a sample 
•  determine the half-life of a nuclear level or a particle 
•  determine the momentum distribution of certain reaction products 
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Some mathematical tools: 

Random variables:  
x, y, … represent variables          (a certain magnitude) 
{xi}, {yi}, … different values        (the values it can take) 

Probability density function (PDF): 
P(x), P(y), P(x,y), … probability of obtaining xi, or yi, or xi and yi       
simultaneously 

Discrete: x1, x2, … → Σ           (e.g. number of events) 
Continuous: x  ∈ dx  → ∫         (e.g. momentum of a particle) 

Probability: 
A function of the random variable which fulfill:  
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Expected value of a function of the random variables: 
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Binomial distribution 

•  Probability that out of N particles 
x disintegrate in a time interval Δt 

•  Probability that if there are nanb 
collisions there are x reactions 
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The basic distribution of 
counting experiments 





Poisson distribution 

•  Limiting case of binomial distribution when N >> and p<< 
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Multinomial distribution 

•  Related to classification problems as histograms: probability 
that out of N events x1 are of type 1, x2 are of type 2, … 
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Normal or Gaussian distribution 

•  Appear as a consequence of the Law of Large Numbers. Good 
approximation of Binomial or Poisson distribution for large µ=Np 

P(x) = 1
2πσ

e
−
1
2
x−µ( )2

σ 2 ≡ Ν µ,σ( )

x = µ

σ 2 =σ 2

γ = 0
ξ = 0

µ: mean, σ: width 

The most ubiquitous 
distribution in experimental 
science 





Good approximation of 
Binomial or Poisson when 
Np or µ ≥ ~10 

Probability 
integrals 

Interval Probability 
-1σ,+1σ	

 68.2% 
-2σ,+2σ	

 95.4% 
-3σ,+3σ	

 99.6% 
-4σ,+4σ	

 99.8% 



Central limit theorem 
 
•  The mean value calculated from a subset of a sufficiently large 

number of random samples will be approximately normally 
distributed 

•  The PDF of the sum of independent random variables is the 
convolution of the individuals PDF. The convolution of a large 
number of PDF tends to the normal distribution 



χ2 distribution 

•  Is the distribution followed by the sum of the square of ν 
independent random variables each with distribution N(0,1)  
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Student t distribution 
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•  Is the distribution followed by                              where            are the 
mean and variance of a sample of size ν+1 whose parent distribution 
has mean value  
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Useful for testing the 
significance of the 
difference of two 
sample means 



For ν=1 reduces to the 
Cauchy or Lorentzian 
distribution 

For ν→∞ 
approaches N(0,1) 



What is probability? 

The Frequentist point of view 
 
If we repeat and infinite number of times a measurement in exactly 
the same conditions we would obtain the PDF of the data 

•  It is an “experimental” definition, not an abstraction 
•  Cannot be applied to parameters or hypothesis 

The Bayesian point of view 
 

It measures the plausibility (objective) of, or the degree of belief 
(subjective) on anything 

•  Based on Bayes theorem 
•  Can be applied to data, parameters or hypothesis 

NUMERICAL RECIPES: THE ART OF SCIENTIFIC COMPUTING: William H. Press, Saul A. Teukolsky, 
William T. Vetterling and Brian P. Flannery 

(plausibilidad, grado de creencia) 



Bayes theorem: 

P C | E, I( ) =
P E |C, I( )P C | I( )

P E | I( )
P C | I( ) : prior probability
P E |C, I( ) : likelihood function
P C | E, I( ) : posterior probability
P E | I( ) : normalization P E |C, I( )P C | I( )

C
∑

•  C, E, I : random variables (data or parameters) or 
propositions (hypothesis)  
•  P : degree of believe  
•  all probabilities are conditional in the subjective version (I!) 
•  allows to update the knowledge with new information 
•  intimately related to the objective of experimental science 

C: cause 
E: effect 
I: prior information 



Parameter estimation 

Estimator: Probability density function of the data sample and of the 
parameters which allows to estimate the latter. 

Desired properties of estimator: 
a) Consistent: if the sample increases the parameter 
value converges 

b) Unbiased: in the limit of infinite sample size the 
parameter attains the “true” value 

 
c) Efficient: the variance of the estimator is minimal 

(among the possible estimators) 
 
d) Robust: the result (parameter value) is independent 

on the sample 



max L θ | x( ) =max P xi,θ( )
i
∏

Maximum likelihood estimator  
 
Maximize the likelihood L(θ|x) 

For practical reasons often the log-likelihood is used:  

max lnL θ x( ) =max lnP xi θ( )
i
∑

P xi θ( ) : PDF of random variable x depending on parameter θ 	



Fitting data: For Poisson distributed data two forms are 
usually employed: 

lnL = ni
i
∑ ln fi − fi

: event by event data (for low statistics) lnL = ln f xi( )
i
∑

: binned data (histograms) 

Application of ML estimator: 

The better one 



Statistical sample characterization 

How can we characterize the results of the repetition of the same 
experiment (sample)? è sample statistic 

N experiments to determine x, results: x1, x2, …, xn 

Sample distribution: histogram 

Sample variance: 

Sample mean: 

Sample covariance: 
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Application of ML estimator: 



Application of ML estimator: 

Combining measurements with different uncertainties 
 
Weighted mean: 

µi ±σ i

µ =

µi

σ i
2

i
∑

1
σ i
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i
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σ µ
2 =

1
1
σ i
2

i
∑

Set of measurements of the same quantity each 
one with a value and uncertainty: 

 
 

Average value: 
 
 
 

Uncertainty of the average 
estimation: 

But the uncertainty to be 
quoted (weighted sample 

variance)  is: 
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N
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Least squares estimator  
 
Minimize the squared deviations Q2(θ|x) 

minQ2 θ | x( ) = xi − xi θ( )( )Vij−1 x j − x j θ( )( )
j
∑

i
∑ →

Vij : covariance matrix 

Qa
2 =

yi − f xi( )( )
2

yi
∑

Qb
2 =

yi − f xi( )( )
2

f xi( )
∑

To fit Poisson distributed data (σ2
i=yi) in histograms two 

forms are usually employed (counting experiments): 
Cannot handle bins with cero counts: do 
not use for low statistics!    (Popular 
solution: exclude those bins,  biases the 
result!) 

Can be deduced from ML for normally distributed data: P(x) = 1
2πσ

e
−
1
2
x−µ( )2

σ 2

Q2 =
yi − f xi( )( )

2

σ i
2∑

The popular one 

Generally applicable (numerically more 
demanding)  



f(t)=15/τ*exp(-t/τ)  
τ=7.5 

Least 
Squares 
Q2

a 

Maximum 
Likelihood 
binned data 

Integral=30.55 
τ=17(24) 

Sample 
distribution 

Integral=15.03 
τ=4.7(12) 

Examples of fits with low 
statistics: 
Exponential distribution 



Sample[15]={30.7965, 26.0653, 30.0799, 27.4008, 30.2201, 27.3128, 24.5271, 
27.2535, 27.5261, 26.1445, 32.0909, 24.2493, 27.3385, 22.737, 23.9998} 	



Drawn from N(27.5,3.3)	

Example: Normal distribution 

Sample mean= 27.183, RMS=  2.619	



5000 bins 

50 bins 

Least 
Squares 
Q2

a 

Maximum 
Likelihood 
binned data 



Bootstrap methods

• Monte Carlo method to evaluate sample statistic (mean, variance,…) 
and its uncertainty from samples

• Useful when the underlying distribution is unknown or the sample size is 
too small

• Consists of resampling with replacement* the original sample many 
times, each time calculating the statistic, to finally compute the average 
of the distribution so obtained

Mean=27.17(68)

NB=1000

RMS=2.49(38)

Example (previous sample):

Drawn from N(27.5,3.3)

(*) each sub-sample item is chosen 
randomly from the full sample



Derived magnitudes. Uncertainty propagation. 

If the magnitude y is a function of other magnitudes with pdf P(x1, x2, …) 
what is the covariance on y coming from the covariance on x1, x2, …? 
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Taylor expansion: 

Estimation of the 
covariance matrix: 

If O(2)=0 use O(3)! 

Approximation!: 
•  Non-zero 1st derivative 
•  Small 2nd derivative 
•  Small σ	





z = ax + by σ z
2 = a2σ x

2 + b2σ y
2 + 2abσ xy

z = axy σ z
2
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=
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Uncertainty propagation: some simple cases 

Beware of the 
correlations! 



Linear inverse problems:  
d = R · f 

Solution is not  f = R-1 · d 

Problem:  
•  statistical nature of the problem 
•  numerical difficulties of the inversion 
Solution:  
•  reproduce the data in  χ2 or maximum-
likelihood sense 
•  use a priori information on the solution 

ill-posed or  
ill-conditioned 
problems 

Inverse problems  



Solution of linear inverse problems:  d = R · f   (I) 

Linear Regularization (LR) method:  
•  solution must be smooth: polynomial 

( ) 22:min fBf ⋅+λχ λ: Lagrange multiplier 
B: regularization matrix of order o (0,1,2,…) 

Algorithm: 

( ) dVRBBRVRf 1
d

T1T1
d

T ⋅⋅⋅⋅+⋅⋅= −−− λ
Vd: covariance matrix of data 

( ) ( ) 1T1
d

T1
d

T1T1
d

T
f BBRVRVRBBRVRV −−−−− ⋅+⋅⋅⋅⋅⋅⋅+⋅⋅= λλ

Covariance of solution: 

•  set of non-singular linear equations 
•  solution and uncertainties depend on λ 
•  solution can be negative 





Maximum Entropy (ME) method: 
•  solution must maximize information entropy 
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•  iterative solution: initial value & 

stopping criterion 
•  solution and uncertainties 

depend on λ 
•   solution is positive definite 

Solution of linear inverse problems:  d = R · f   (II) 





Expectation Maximization (EM) method: 
•  modify knowledge on causes from effects (Bayes Theorem) 
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•  iterative solution: initial value & 
stopping criterion 

•  solution is positive definite 

Solution of linear inverse problems:  d = R · f   (III) 





Hypothesis testing and decision theory 
 
Looking for a a small signal above background in a spectrum:  S=T-B 
•  When can we say that a signal has been “seen” in a measurement? (a 

posteriori) 
•  What is the sensitivity of a measurement or the minimum detectable 

signal (a priori) 



Nomenclature:  
•  H0 : null hypothesis (no signal: S=0) 
•  H1 : alternative hypothesis (there is signal: 
S>0 or signal: S>value) 
•  LC : critical level or decision limit 
•  α : integral of background PDF above Lc   
•  β : integral of signal PDF below Lc  
•  Type I error (α): Probability of wrongly 
deciding that there was a signal  
•  Type II error (β): probability of wrongly 
deciding that there was no signal 
•  LD : detection limit or mean signal value 
with a probability 1-β of giving an actual 
value above Lc 

background pdf 

signal pdf 

LC 

LD 
Decision 

table True H0 False H0 

Reject H0 
Type I error 

α 
Correct 

assessment 

Fail to reject 
H0 

Correct 
assessment 

Type II error 
β 

a 
po

st
er

io
ri 

a 
pr

io
ri 

BUT BEWARE OF 
DIFFERENT 
DEFFINITIONS 



An example (simplistic approach):

Environmental lab trying to detect an isotope in a sample (for example 
looking for certain-ray peak)ray peak)

B: background counts, Poisson distributed 
T: total counts, Poisson distributed
S=T-ray peak)B: signal counts

s B
2 =B

s T
2 =T =S+B

s S
2
=sT

2
+s B

2
=T +B=S+2B

For mathematical simplicity: Poisson Normal (wrong for low statistics!)

Confidence levels ,: 5%

LC =1.645s B =1.645 B

LD =LC +1.645s S =1.645 B+1.645 LD +2B

If S>Lc: we then give a signal value S 
with uncertainty
If S<Lc: we give a maximum limit value 
Smax for the signal

(net value)

S

B



Discrepant data: Outliers

The half-life of 137Cs

Data evaluation: How to combine the information from different 
measurements, when some of them deviate(*) from the rest?

(*): “the difference with the average value is much larger than the uncertainty” 

valores atipicos



Discrepant data: Outliers 

The half-life of 137Cs 

Data evaluation: How to combine the information from different 
measurements, when some of them deviate(*) from the rest? 

(*): “the difference with the average value is much larger than the uncertainty”  

valores atipicos 



•  The problem is that either the quoted uncertainties are 
too small or there are  unknown systematic errors  

•  Some times, after revision of the measurement and 
analysis details, one is able to pinpoint the problem 
and eventually correct for it. 

•  More often this is not the case, then: how to calculate 
an average value an its uncertainty? There is no clear 
solution to the problem 

•  Several methods have been proposed: remove 
discrepant data, increase suspiciously low 
uncertainties (LRSW, Normalized Residuals, Rajeval), 
use median instead of mean, use Bayes theorem, use 
Bootstrap methods, … 

MacMahon et al., App. Rad. Isot. 60 (2004) 275 



MacMahon et al., App. Rad. Isot. 60 (2004) 275



MacMahon et al., App. Rad. Isot. 60 (2004) 275 



New views in neutron decay 
mean-life experiments:
“Beam” versus “bottle” 
discrepancy:  a sign of physics 
outside the Standard Model?

Wietfeldt, Atoms 6 (2018) 70
doi:10.3390/atoms6040070


