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In experimental science we try to draw some conclusions on a theoretical
construct (model, hypothesis, parameter,...) from the results of one or
more experimental measurement:

« Experimental results are uncertain (i.e. the repetition of the same
experiment gives different numerical results; different experiments give
different results): how can we then characterize experimental data?

* How can we then infer something from data?

% deductive inference \@

MODEL <E> MEASUREMENT <E> DATA
HYPOTHESIS

\\ inductive inference /
PROBABILITY

This sounds a bit philosophical
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Abstract

*Philosophy has been defined as "an unusually obstinate attempt to think clearly”; | should define it rather
as “an unusually ingenious attempt to think fallaciously”.... The more profound the philosopher, the more
intricate and subtle must his fallacies be in order to produce in him the desired state of intellectual
acquiescence. That is why philosophy is obscure.” (B. Russell [1]).

On the basis of some examples discussed in detail, we examine some general statements, put forward by
philesophically-minded physicists, to see if they are applicable to practical problems met in counting
statistics and are of help in solving them. The outcome of this comparison, although admittedly based on a
restricted sample, indicates that thought alone, even if it appears to be general, is nearly always too narrow
in scope. The complex, and usually incompletely known, structure of a physical situation is too easily
misconceived by a seemingly straightforward generalization. If an essential, but perhaps hidden, aspect
has been overlooked, the model is inappropriate and deductions based on it are of no value. Physicists
therefore seem well advised to mistrust arguments advanced with the claim that they are based on general
reasening. Philosophical conclusions — if one cannot resist drawing them — should be the outcome of
serious physical investigations, both experimental and theoretical, rather than their starting point.
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We want to answer these questions:

How should we quantify the uncertainty on the measurement
of certain parameter?

How this uncertainty depends on other parameters used to
obtain the result?

If several parameters are obtained simultaneously from the
same data how are their values correlated ?

Do the results show a trend deviating from the expected ?
How should we design a measurement in order to minimize
uncertainties?



Vocabulary: uncertainty, error, precision, accuracy

The repetition of a measurement under the same conditions usually
leads to different outcomes: uncertainty incertidumbre
The difference between measurement result and “true” value: error

If the conditions were really the same, the variations of the result can be
related to the statistical nature of physical processes: statistical
uncertainty (quantifiable)

If the conditions were actually varying between measurements (but this
fact was unknown to us): systematic uncertainty (unknown)

If the measurement was faulty this could introduce a bias in the result:
systematic deviation (unknown)

If the result of the measurement depends on not so well known
parameters: systematic uncertainty (quantifiable)

We are assuming that the measurement has enough precision to allow
distinguishing these variations precision

The accuracy on the other hand measures the deviations of the
measured value from the true value “exactitud”
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Examples of primary questions in NP and PP experiments :

» determine the amount of a radioactive isotope on a sample
 determine the half-life of a nuclear level or a particle

» determine the momentum distribution of certain reaction products
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In nuclear and particle physics we are dealing with counting experiments:
we register the number of counts in a given detector, produced by particles
of a given type at a given time with a given momentum and under some
other conditions. From this and other detector related information we obtain

the requested data.



Some mathematical tools:

Random variables:
X, Y, ... represent variables (a certain magnitude)
{xi}, {y;}, ... different values (the values it can take)

Probability density function (PDF):
P(x), P(y), P(x,y), ... probability of obtaining x;, or y,, or x; and v,
simultaneously

Discrete: x4, X5, ... = Z (e.g. number of events)
Continuous: x €dx — [ (e.g. momentum of a particle)
Probability:

A function of the random variable which fulfill:

1) P(x)=0, 2) f P(x)dx =1, 3)P(x;),P(x,)indep.



Expected value of a function of the random variables:
E[f]= f f(x,v,..)P(x, v,..)dxdy...

Moments of the distribution:
algebraic: E|x“y'...]
central: E[(x — E|x)f (x- E|x)) ]

mean: Xx-= E[x]= f xP(x,y,...)dxdy... promedio

variance: Of =F [(x - )_6)2 ]= f (x - )_c)zP(x, V,...)dxdy... varianza

skewness : y = I x=Xx) P(x, y,...)dxdy... Sesgo
0_3

kurtosis: £+3= 14 f(x — )?)4P(x,y,...)dxdy... kurtosis
(0

X



median: the value that separates the probability distribution
In two halves... mediana

covariance: o, = E|(x-x)y- y)]=f(x ~x )y -¥)P(x, y...)dxdy...

correlation: p =—

x and y are independent if P(x,y)=P(x)P(y) = o,=0
X and y are uncorrelated if 6, =0 = independent

confidence interval /a,b] and confidence level a

a =}a’x f P(x, v,..)dydz...



* Probability that out

x disintegrate in a time interval At

Binomial distribution

of N particles

* Probability that if there are n_n,
collisions there are x reactions

X = &’_JAtN X = nanb%
p 0
X : success, N : trials, p : probability p
N' N-x
P(x) = (1= = B(,
)’ (1-p)"™" =B(N, p)
X =Np The basic distribution of
5 | counting experiments
o’ =x(1- p)
1-2 2\4
i %&e
o O
1 6
= -
o N




Binomial PDF (P=0.1, N=100)
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Poisson distribution

» Limiting case of binomial distribution when N >> and p<<

X : success, N : trials, p : probability

u = Np:.mean
uo_
P(x) = ik # = P(/,t)
X!
X =U
o’ =u < The distribution used in NP
& and PP counting experiments
1 <8
S ©
Ju
1
E=—
u




Poisson PDF(LAMBDA =15)
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Multinomial distribution

* Related to classification problems as histograms: probability
that out of N events x, are of type 1, x, are of type 2, ...

X, X, ... . events of type 1, 2, ...
N : trials
P, P - . probability of types 1, 2, ...

Multinomial:

N!
P(x,,x,,...) = -
x!1x,0...
X; = Npi
Oiz =pz(1_pi) Qg;\?’
@)
= _Npipj 0\%

Poisson distribution

plx1 pzx2 e = M(N, pl,pz,...) for each channel

with or without
correlations

M(Na P> P> ) = P(MIP)(P]E]I% )




Normal or Gaussian distribution

» Appear as a consequence of the Law of Large Numbers. Good
approximation of Binomial or Poisson distribution for large u=~Np

u: mean, o: width

1 _l(x_“)z
2 02 -
- -N0o)
; 000‘5
A
oo$

The most ubiquitous
distribution in experimental
science
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Binom(48, 0.25) ——

Norm(12,3) ——

Good approximation of
Binomial or Poisson when
Np or u =~10

Interval | Probability

-10,+10 68.2%
-20,+20 95.4%
-30,+30 99.6%
-40,+40 99.8%




Central limit theorem

 The mean value calculated from a subset of a sufficiently large
number of random samples will be approximately normally
distributed

« The PDF of the sum of independent random variables is the
convolution of the individuals PDF. The convolution of a large
number of PDF tends to the normal distribution

A Wio

Eo(‘ - Q) [




%2 distribution

* |s the distribution followed by the sum of the square of v
Independent random variables each with distribution N(0,1)

v: degrees of freedom

Useful for testing
consistency of data points

follows %?(n-1)
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Student t distribution

+ Is the distribution followed by (% -x)/s /[y +1) where X, 5, are the
mean and variance of a sample of size v+1 whose parent distribution
has mean value x

v: degrees of freedom

P(x) =
x=0
o =
y=0

o) 1
Tt 2) e e

Useful for testing the
significance of the
difference of two
sample means
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What is probability?
The Frequentist point of view

If we repeat and infinite number of times a measurement in exactly
the same conditions we would obtain the PDF of the data

* |Itis an “experimental” definition, not an abstraction
« Cannot be applied to parameters or hypothesis

The Bayesian point of view

It measures the plausibility (objective) of, or the degree of belief
(subjective) on anything (plausibilidad, grado de creencia)
- Based on Bayes theorem

« Can be applied to data, parameters or hypothesis

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian™ in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that

NUMERICAL RECIPES: THE ART OF SCIENTIFIC COMPUTING: William H. Press, Saul A. Teukolsky,
William T. Vetterling and Brian P. Flannery




Bayes theorem:

C:
P(CIE.T) = P(EIC,I)P(CII) o
P(EIT) |: prior information

P(CII): prior probability

P(EIC,I): likelihood function

P(CIE,I): posterior probability

P(E1I): normalization EP(EIC,I)P(CII)
c

* C, E, I : random variables (data or parameters) or
propositions (hypothesis)

 P: degree of believe

« all probabilities are conditional in the subjective version (I!)
« allows to update the knowledge with new information

* intimately related to the objective of experimental science



Parameter estimation

Estimator: Probability density function of the data sample and of the
parameters which allows to estimate the Ilatter.

Desired properties of estimator:
a) Consistent: if the sample increases the parameter
value converges

b) Unbiased: in the limit of infinite sample size the
parameter attains the “true” value

c) Efficient: the variance of the estimator is minimal
(among the possible estimators)

d) Robust: the result (parameter value) is independent
on the sample



Maximum likelihood estimator
Maximize the likelihood L(6|x) The better one
max L(6|x)=max HP(xi,H)

P(xi

H) : PDF of random variable x depending on parameter 6

For practical reasons often the log-likelihood is used:

0)
Application of ML estimator:

Fitting data: For Poisson distributed data two forms are
usually employed:

max lnL(H‘x) = max ElnP(xi

InL = Ehlf(xi) : event by event data (for low statistics)

InL=YnInf~f :binned data (histograms)



Application of ML estimator:

Statistical sample characterization

How can we characterize the results of the repetition of the same

experiment (sample)? = sample statistic

N experiments to determine x, results: x', x2, ..., x"

Sample distribution: histogram

~ 1 i — A
Sample mean: x=ﬁ2x A=A

Sample variance: s = %E(x _ x) — 0

Sample covariance:  §,, = —E(x" —x)(yi —




Application of ML estimator:

Combining measurements with different uncertainties

Weighted mean:

Set of measurements of the same quantity each
one with a value and uncertainty:

Average value:

2

o

NHJ‘ (umol )

N

H=-077
p =007

1 Uncertainty of the average
T estimation:

But the uncertainty to be

10 20 30 40 50 quoted (weighted sample

[

Soil %C variance) IS:

2




Least squares estimator
The popular one

Minimize the squared deviations O?(0|x)

mian(Hlx)=ZE(xi_Xl_(g))vg—l(xj_Xj(e))e Q2=E()’i—£§xl~))

v, : covariance matrix

Can be deduced from ML for normally distributed data: P(x)= N e
JTO

To fit Poisson distributed data (o%=y;) in histograms two
forms are usually employed (counting experiments):

Cannot handle bins with cero counts: do

2
0> = E(yi _f(xi)) not use for low statistics! (Popular
‘ y; solution: exclude those bins, biases the
result!)
2
0 = (yi _f('xi)) Generally applicable (numerically more
b _E £(x) demanding)



number

number
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distribution

h1

Entries 15
Mean 4.646

RMS

4.068

f(t)=15/v*exp(-t/t)

T=7/.5

L1 | 1 | | Ll 1l | Ll 1 1 LT | ' - | - |
00 5 10 15 20 25 30 35 40 45 50
variable
3 x2 I ndf 2.181/8
i LeaSt Constant  0.5682 + 0.4948
- Slope  -0.05778 + 0.08021
- Squares
| 2
N
™ Integral=30.55
: 1=17(24)
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50

number

Examples of fits with low

statistics:

Exponential distribution

5.672/48
1.166 + 0.367
-0.2135+ 0.0553

/

w

T T I T [ I I I I I I I [T
T 1
|

. 2 | ndf
M aX| m U m Constant
. . Slope
Likelihood :
2 binned data

Integral=15.03

il 1=4.7(12)
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number

number

Example: Normal distribution

Sample mean= 27.183, RMS= 2.619

0.5—

1.5—

5000 bins
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L1

h1

Mean
RMS

Entrie!

S 15
27.18
2.619

\

5 10 15 20 25 30 35 40 45 50

variable

50 bins

'

h1

RMS

Entries
Mean
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27.18
2.619

0

5 10 15 20 25 30 35 40 45 50

variable

number

number

Drawn from N(27.5,3.3)

Sample[15]={30.7965, 26.0653, 30.0799, 27.4008, 30.2201, 27.3128,24.5271,
27.2535,27.5261, 26.1445, 32.0909, 24 .2493, 27.3385, 22.737,23.9998 }

H

: Least
~ Squares
i QZa
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1
x2 / ndf 1.329/4
Constant  3.433 + 1.370
Mean 28.1+0.9
Sigma 3.083 + 0.985

L

| IR R

0

5 10 15 20 25 30 35 40 45 50

variable
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number

Bootstrap methods

Monte Carlo method to evaluate sample statistic (mean, variance,...)

and its uncertainty from samples

Useful when the underlying distribution is unknown or the sample size is
too small
Consists of resampling with replacement* the original sample many

times, each time calculating the statistic, to finally compute the average
of the distribution so obtained

Example (previous sample):

Drawn from N(27.5,3.3)

NB

100

80

60

40

20

Mean=27.17(68)

(*) each sub-sample item is chosen
randomly from the full sample

h2

Entries

1000

Mean 2717
RMS 0.6783

32

34
variable

36

=1000

number

150

100

50

h3

Entries 1000
Mean 2.491
RMS 0.3823

RMS=2.49(38)

variable




Derived magnitudes. Uncertainty propagation.

If the magnitude y is a function of other magnitudes with pdf P(x,, x,, ...)
what is the covariance on y coming from the covariance on x,, x,, ...?

Taylor expansion: y(xl,xz,...)= y(a?l,fz,...)+ a—y(xl. —f.)+

- X, Z
dy dy i i
—— X, —-x \x, - x|+
22% axj(, N, - %)
y=y(%,%,,...)+O(2) +

Estimation of the T

: i dy dy Approximation!:
covariance matrix: o’ = O N I

y = xx; * Non-zero 1% derivative

i 0X; Gx] « Small 2" derivative

Small o

If 0(2)=0 use O(3)! 9y, 9y,
O = 0
Yidi EE dx. Ox XiXj



Uncertainty propagation: some simple cases

Z=ax+by
7 = axy

X
Z=a—
z=ax"
Z=aebx
z=aln(bx)

2 2 2
O.=a0,+b"0,+2abo,

2 2 %

GZ — Gx + Oy + 2 ny
—2 —2 —2 —
Z X y xY
2 2
GZ — 2 + Gy — zg_xy
-2 —2 —2 —_—
Z xX° y Xy
2 2
OZ — b2 Ox
-2 EZ
2
O
R bzo'z
-2
2
) X
()'Z =d —

Beware of the
correlations!



Inverse problems

Linear inverse problems: Problem:
et » statistical nature of the problem
Solution is not f=R!- d » numerical difficulties of the inversion
Solution:
ill-posed or * reproduce the data in x? or maximum-
ill-conditioned likelihood sense
problems * use a priori information on the solution
10* ¢
2 - :
€ 0 10° L
3 SN
10° F
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Solution of linear inverse problems: d=R - f (I)

Linear Regularization (LR) method:
* solution must be smooth: polynomial

e > ¢2| M Lagrange multiplier
min. (f)"'}"B f‘ B: regularization matrix of order o (0,1,2,...)

Algorithm:

f=(R"-V;"'R+2B"-B] -R"-V;'-d
V,4: covariance matrix of data

Covariance of solution:

Vf =(RT Vd_l 'R+7LBT 'B)_l 'RT Vd_l -(RT Vd_l 'R+7LBT .B)_l

» set of non-singular linear equations
« solution and uncertainties depend on A
e solution can be negative
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Solution of linear inverse problems: d=R - f (II)

Maximum Entropy (ME) method:
* solution must maximize information entropy

. I, \: Lagrange multiplier
max : S(f) - z% (f) S(f): entropy, S(f) = _E(f" ln£ = +hl.)

One possible algorithm:
2
(s+1) (s) (s)
ij =ij exp ZE.Ri( ZRZk kS )/ g;r;;:;)rrelated
1

Covariance of the solution:

4  iterative solution: initial value &
o. ~—f£fNR R /o* stopping criterion
Lili 4 Jif; Z i ’V/ 4 « solution and uncertainties
depend on A
e solution is positive definite
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Solution of linear inverse problems: d=R - f (III)

Expectation Maximization (EM) method:
» modify knowledge on causes from effects (Bayes Theorem)

Plf 1 )- (d|f)(f)

EP 17, )P

Algorithm:
R, fd,

f](S+1) ER E ZRZk k(S)

Covariance of the solution:

V,=M-V,-M'
(f(s+1) _ MY -d)

iterative solution: initial value &
stopping criterion
solution is positive definite
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eory

ckground in a spectrum: S=T-B
s been “seen” in a measurement? (a

rement or the minimum detectable

e B L B B A i B

Selected diphoton sample
. Data 2011 and 2012
Sig + Bkg inclusive fit (m_=126.5 GeV)

$ =0 eeseseee 4th order polynomial
5=7 TeV,det =481"

Events / GeV

@:arev,fwt =59




a posteriori
A

a priori
A

Nomenclature:
* H, : null hypothesis (no signal: S=0)

* H, : alternative hypothesis (there is signal:

S>0 or signal: S>value)

* L. : critical level or decision limit

* a : integral of background PDF above L,
* B : integral of signal PDF below L_

* Type | error (a): Probability of wrongly
deciding that there was a signal

* Type Il error (B): probability of wrongly
_ deciding that there was no signal

 « L, : detection limit or mean signal value
with a probability 1-p of giving an actual
_ value above L,
Decision
table True H, False H,
Reject H, Type I error Correct
o assessment
Fail to reject Correct Type II error
H, assessment B

BUT BEWARE OF
DIFFERENT
DEFFINITIONS

Null Hypothesis (Hg) Is True

background pdf
Fy

Type I Error ()

——Retain Ho‘—-lﬁ—Reject Hy——+

Alternative Hypothesis (H) Is True

signal pdf

F
@ P 1-
Type II Error (8) ows (1-6)

<+—Retain H0—+—Reject Hy——»

Both Hypotheses Combined

Hp True LD
/ F, LC Hi Tr

o

ue

—

+—Retain Hy—«—Reject Hy—

Values of F



An example (simplistic approach):

Environmental lab trying to detect an isotope in a sample (for example
looking for certain y-ray peak)

2
B: background counts, Poisson distributed 0g =8
T: total counts, Poisson distributed o: =T =5+B
S=T-B: signal counts aé —02+02 =T+B =5+28

Confidence levels a, 3: 5%

For mathematical simplicity: Poisson =»Normal (wrong for low statistics!)

L. =1.6450, =1.645\B (net value)
L, =L, +1.6450, =1.645vB +1.645,/L, +2B

8001

7001

If S>L_: we then give a signal value S

5001

with uncertainty
If S<L_: we give a maximum limit value

S,.., for the signal

1007 ‘ Il | Il \g Il ‘ L1 IE | L1 1 | L1 1 ‘ L1 | L1 ‘ L1
1800 2000 2200 2400 2600 2800

O I I
1400 1600



Discrepant data: Outliers valores atipicos

Data evaluation: How to combine the information from different
measurements, when some of them deviate® from the rest?

12000 -

The half-life of 137Cs

11000 I H i\J } 3a o .y
L

10500

Half-life (days)

10000

9500

9000 T T T
1950 1960 1970 1980 1990

Year of Publication

T |
2000 2010

(*): “the difference with the average value is much larger than the uncertainty”



Discrepant data: Outliers valores atipicos

Data evaluation: How to combine the information from different
measurements, when some of them deviate®) from the rest?

11600 -

The half-life of 137Cs
11400
L 4
11200 } +
‘% <
f_?nooo I {'i 3 s
= * L - — ¢
© L 2
g t
3
10800
10600 i
10400 : . . . .
1950 1960 1970 1980 1990 2000 2010

Year of publication

(*): “the difference with the average value is much larger than the uncertainty”



The problem is that either the quoted uncertainties are
too small or there are unknown systematic errors
Some times, after revision of the measurement and
analysis details, one is able to pinpoint the problem
and eventually correct for it.

More often this is not the case, then: how to calculate
an average value an its uncertainty? There is no clear
solution to the problem

Several methods have been proposed: remove
discrepant data, increase suspiciously low
uncertainties (LRSW, Normalized Residuals, Rajeval),
use median instead of mean, use Bayes theorem, use
Bootstrap methods, ...

MacMahon et al., App. Rad. Isot. 60 (2004) 275
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Cs-137 Half-Life Data Evaluations
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Cs-137 data - expanded version of the end of Figure 1
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