Optica lónica & Espectrómetros

1^{era} Clase: 21/01/2025, 09:30 - 10:30 Definiciones; Formalismo; Principales elementos de óptica iónica

2^{da} Clase: 28/01/2025, 09:30 - 10:30 Higher Orders ; Ejemplos

Prof. Dr. Teresa Kurtukian Nieto

IEM-CSIC, Madrid Grupo de Física Nuclear Experimental FNEXP

Bibliografía

• Optics of Charged Particles, Hermann Wollnik, Academic Press, Orlando, 1987.

• The Optics of Charged Particle Beams, David.C Carey, Harwood Academic Publishers, New York 1987.

• A First- and Second-Order Matrix Theory for the Design of Beam Transport Systems and Charged Particle Spectrometers. Karl L. Brown. SLAC Report-75. June 1982 <u>https://indico.fnal.gov/event/23242/attachments/44759/53900/KarlBrown_transport_</u> <u>model.pdf</u>

Computing Codes:

- COSY INFINITY 10.2 Beam Physics Manual <u>https://www.bmtdynamics.org/cosy/manual/COSYBeamMan102.pdf</u>
- GICOSY Manual <u>https://web-docs.gsi.de/~weick/gicosy/</u>
- TRANSPORT http://aea.web.psi.ch/Urs_Rohrer/MyWeb/trans.htm

Thanks B. Jacquot and Franck Varenne/ GANIL and H. Wieck / GSI for some material used in this course

What is an ion Accelerator?

Device that uses electromagnetic fields to accelerate charged particles to high velocity

CMAM Madrid

CERN Accelerator complex

Electrostatic accelerators :

The kinetic energy of a charged particle q passing through an electrical potential V, is *Ek* **= qV**.

1932 Primera Reacción con protones:

 $p + {}^{7}Li \rightarrow {}^{4}He + {}^{4}He$

1929 Robert J. Van de Graaff

(postdoc Princeton)

1933 Generator of 7 MV MIT

Concept of Van de Graaff Accelerator

Crockoft & Walton (PN 1951) Construyeron (1930) el primer acelerador para explorar el núcleo

The Cockcroft-Walton generator at the University of Edinburgh.

Electrostatic accelerators : Tandem Van de Graaff-> CMAM

Aceleradores : los microscopios de la F.N.

Aceleradores lineales

1929 **Wideroe** inventó el acelerador lineal (LINAC). Prototipo de 3-pasos

1931 **D. Sloan** (UC-Berkley, Lawrence group) construyó un LINAC que podía acelerar iones de Hg hasta 1 MeV.

D. Sloan and his 1 MeV LINAC

Aceleradores : los microscopios de la F.N.

Ciclotrón

Lawrence (PN 1939) propuso el ciclotrón TRIUMF Cyclotron, Canada

Complejo de aceleradores del CERN

Sincrotrón (1940)

Ion optics

¿Qué es un espectrómetro?

En el sentido más amplio, un espectrómetro es cualquier instrumento que se utiliza para medir la variación de una característica física en un rango determinado.

Un dipolo magnético es el espectrómetro más simple para analizar la relación masa-carga(m/q)

Dispersión

Bρ := p / q p = momentum q = charge

In a homogenous field with flux density B perpendicular to the direction of motion, ions of magnetic rigidity $B\rho$ are bend on a radius ρ .

BIGRIPS RIKEN Japan

LISE (wien filter) GANIL, France

VAMOS GANIL, France

Why it works?

Thanks to the Lorentz force F and Newton's second law

1. Lorentz force: A charged particle moving in an electromagnetic field experiences a force.

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$
Electic Magnetic
Eorce Force

This force causes a centripetal acceleration and consequently a circular motion of the particle in the medium based on the equations described below.

2. Newton's second law

Electrostatic selection :

$$F = q E$$

$$F_{Electic} = F_{centripeta}$$

$$E\rho = \frac{mv^2}{q}$$

✓ Difficult to bend energetic particles with raisonnable E field due to sparking

Most used for low energy particles keV

- Aston Nobel price (1919) : E+ B selection with a « mass spectrograph »
 - ✓ identification Stable isotopes : ²⁰⁻²²Ne; ³⁵⁻³⁷Cl & mass measurement

Magnetic Separation:

 $F_{Magnetic} = F_{centripetal}$

 $\mathbf{F}_{\text{magnetic}} = \mathbf{q} \ \mathbf{v} \ \mathbf{B}$

$$B\rho = \frac{mv}{q}, \rightarrow Magnetic Rigidity$$

Beam rigidity quantifies how difficult it is to bend the beam and is given by the total momentum divided by the total charge

Wien Filter: $F_{electic} = F_{magnetic}$

v = E/B with $E \perp B$

$$m/q = \frac{2Ek}{qv^2}$$

The simplest m/q magnetic spectrometer : 1 dipole magnet

- 40's: Manhattan project U-235/U-238 enrichment (B selection)
- \blacktriangleright Dipole \rightarrow mass dispersion

The dipole elements also have focusing/defocusing properties.

With edges perpendicular to the optical axis (edge angle 0°) focuses the beam in the bending plane (x). There is no focusing action in the y direction.

If the magnet edge angles deviate from 90°, the focusing power in the x direction can be adjusted. If the edge angle is made positive (as shown), there is weaker focusing in the x direction. If the angle is negative, there is stronger focusing in the x direction.

Changing the edge angle also has an important effect in the y direction:

if the angles are positive, the fringing field of the magnet will focus the beam in the y direction

Overall, this means that the focusing in the x direction can be traded for y focusing. The focal length from the edge focusing is given by.

$$f_Y = \frac{R}{\tan \alpha}$$

Dipôle : Traitement général							ar	0,78539816	a1	-0,40985932
_							te	0	a2	-3,04647909
α	45	deg		K1	0,3		ts	0	a3	0,63661977
R	1000	mm		K2	4		са	0,70710678	Q	-1,03415799
gap	70	mm					sa	0,70710678	R	-0,10765524
β entrée	0	deg		Indice	0		delta	1	D	-1,09442448
β sortie	0	deg					par1	7,0711E+11		
							par2	707106780	par5	-707,106781
Arête	414,213562	mm	Ro Theta	785,398163	mm		par3	0,00070711		4
							par4	-1,41421356	-414,213562	2414,21356
Equifocale	2414,21356	mm	Cd (dp/p)	2	mm/pm					
								Dipôle à	a T11 = 0 (sans	s indice)
Foc. Objet	1E+12	mm	Foc. Image	1000	mm			α	45	deg
			Cd (dp/p)	1	mm/pm			R	1000	mm
ATTENTION :	Erreur de cale	cul sur les dista	ances focales	pour aimants à	à indice			β (e/s)	0	deg
								Focale	1000	mm
	Correction 1e	r niveau	Correction 2ème niveau							
	radian	degré		radian	degré			Dipôle à T1	1 = T33 = 0 (s	ans indice)
ψ entrée	0,021	1,20321137		0,021	1,20321137			α	45	deg
ψ sortie	0,021	1,20321137		0,021	1,20321137			R	1000	mm
								tan(ε)	0,20612762	racine 1
								ε (e/s)	11,6471149	deg
Dipôle secteur (sans indice)				Dipôle à doub	le focalisation	(sans indice)		Focale	2212,03854	mm
								Cd (dp/p)	1,99058892	mm/pm
α	45	deg		α	45	deg				
R	1000	mm		R	1000	mm		tan(ε)	-1,65848937	racine 2
ε (e/s)	0	deg		ε (e/s)	11,7009195	deg		ε (e/s)	-58,9117733	deg
Focale	2414,21356	mm		Focale	4828,42712	mm		Focale	-420,386128	mm
Cd (dp/p)	2	mm/pm		Cd (dp/p)	4	mm/pm		Cd (dp/p)	0,19984222	mm/pm
ψ entrée (1)	0,021	1,20321137		ψ entrée (1)	0,02232769	1,27928238		tan(ε)	1,86222106	racine 3
ψ sortie (1)	0,021	1,20321137		ψ sortie (1)	0,02232769	1,27928238		ε (e/s)	61,764505	deg
ψ entrée (2)	0,021	1,20321137		ψ entrée (2)	0,02193926	1,25702674		Focale	-462,221908	mm
ψ sortie (2)	0,021	1,20321137		ψ sortie (2)	0,02193926	1,25702674		Cd (dp/p)	-0,28605761	mm/pm

- Final position Xf depend on the

- Bp (good for identification or separation)
- position & Angle after the reaction (bad)

Beam divergence after target 2 problems solved with focusing lenses

Imagine than focusing lenses exist like in light optics

Xf Focal plane

With Focusing lenses $Xf = F(B\rho, \partial, \phi)$

less unknowns ! Less beam losses!!

The trajectoires are independent of the angles θ_i , ϕ_i And the initial position is $\chi_0 = 0$, $\chi_0 = 0$

 $Xf = F(B\rho, \theta i, \phi i, \chi, \chi)$

Focusing in both planes : doublets, triplets

But how to have a Net Focusing effect in the two plans? : DOUBLETS/TRIPLETS

Focusing Elements

Resolving power

The term resolving power is the ability of a spectrometer to resolve adjacent peaks in a mass spectrum and is often used interchangeably with resolution. The separation of peaks for singly charged ions can be expressed as a mass difference δm

Selectivity (clean or not clean)

noise, background, distribution tails..

rejection of unwanted particle

Resolution = $\Delta x_{FWHM} / dx/dm$,

Resolving power = 1/Resolution

Mass dispersion usually expressed in meters (m) (SI):

cm/% (centimeters per 100%) ; mm/‰

Notation :

- ✓ D_m
- ✓ dx/dm, physical meaning

Matricial notation (see later)

- ✓ (x|δ) Wollnik
- ✓ R16, T16, M16

✓ Resolving power R = $\frac{(x|\delta)}{\Delta x (FWHM)}$

Beam optics (basics)

Already seen:

- \checkmark Dispersion and focalisation with dipoles
- ✓ Focalisation with quadrupoles
- ✓ Resolution

Next concepts:

- Particles coordinates
- Beam emittance
- Optical Matrices following Taylor expansion
- Angular Acceptance
- **B**ρ **Acceptance**

Ion optical coordinates

We look at beamline, use coordinates relative to the nominal optical axis.

Transverse motion:

x' = dx / dzy' = dy / dz

- Often defined as derivative in path with coordinates of single ions.
- $a = p_x / p_0$ $b = p_y / p_0$
- With common constant p_0 we can use a normal Hamiltonian.

for same forward momentum x' = a, for small angles $x' = a = tan(\alpha) \sim \alpha$

 p_0

The Coordinates

Notations in the Literature is not consistent!

Wollnik GICOSY	Brown	TRANSPORT	COSY	Meaning
x	x	x	r1 = x	the horizontal displacement of the arbitrary ray with respect to the assumed central trajectory.
а	х'	θ	r2 = a = px/p ₀	the angle this ray makes in the horizontal plane with respect to the assumed central trajectory.
У	У	У	r3 = y	the vertical displacement of the ray with respect to the assumed central trajectory
b	У'	φ	r4 = b = py/p ₀	the vertical angle of the ray with respect to the assumed central trajectory
l	l		$r5 = \ell = -(t - t_0)v_0\gamma/(1 + \gamma)$	the path length difference between the arbitrary ray and the central trajectory.
δ	δ	$dp/p = \frac{B\rho - B\rho_0}{B\rho_0}$		fractioned momentum deviation of the ray from the assumed central trajectory
δ _U			$r6 = \delta K = (K - K_0)/K_0$	energy difference ray with respect to the reference energy
δ _m			$r7 = \delta m = (m - m_0)/m_0$	mass difference ray with respect to the reference energy
δ _e			$r8 = \delta z = (z - z_0)/z_0$	charge difference ray with respect to the reference energy

Transfer Matrix Description

Transfer function on vector of coordinates

In practise use Taylor expansion of this function, (x,a) = $\frac{\partial x_f}{\partial a_i}$

1st order transfer matrix T :

$$\begin{pmatrix} X \\ a \\ Y \\ b \\ \delta \end{pmatrix}_{f} = \begin{pmatrix} (X,X) & (X,a) \\ (a,X) & (a,a) \\ \hline = \mathbf{0} \\ f \\ \hline \end{bmatrix}_{f} = \begin{pmatrix} (X,X) & (X,a) \\ (a,A) \\ \hline \\ (a,X) & (a,a) \\ \hline \\ (b,Y) & (b,b) \\ \hline \end{bmatrix}_{f} = \mathbf{0} \\ \hline \\ \begin{bmatrix} (X,X) & (X,a) \\ (a,A) \\ (b,Y) & (b,b) \\ \hline \end{bmatrix}_{f} = \mathbf{0} \\ \hline \\ \end{bmatrix}_{f} \begin{pmatrix} X \\ a \\ Y \\ b \\ \delta \\ \end{bmatrix}_{i}$$

Det (T) = 1 Liouville's theorem with bending only in one plane only forces in x or y direction momentum conservation

 $T_{tot} = T_n * \ldots * T_3 * T_2 * T_1$

Full system

Ion optics

Taylor expansion in x, a, y, b and δ

 $x_1 = (x|x) x_0 + (x|a) a_0 + (x|\delta)\delta + (x|x^2)x_0^2 + (x|xa) x_0a_0 + (x|a^2)a_0^2$

 $(x|x\delta) x_0 + (x|a\delta) a_0\delta + (x|\delta^2)\delta^2 + (x|y^2)y_0^2 + (x|yb) y_0b_0 + (x|b^2)b_0^2 + higher orders$

First order

$$(x \mid \dots) = \frac{\partial}{\partial x}$$

Higher orders : e.g.
$$(x|a^2) = \frac{\partial x}{\partial a \partial a} = T_{122}$$

Transfer matrix formalism

Most crucial parameters :

 $T_{11} = magnification in horizontal$

 $T_{16} = dispersion in momentun = dispersion in B\rho$

 $T_{33} = magnification in vertical$

 $T_{12} = angular dependence in horizontal$

 $T_{34} = angular dependence in vertical$

Beam emittance

The emittance is defined as the six-dimensional volume limited by a contour of constant particle density in the (x, px, y, py, z, pz) phase space. This volume obeys the Liouville theorem and is constant in conservative fields

The area of the particle distribution is conserved but the area of the elliptical envelope increases.

Beam emittance

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon$$
 $\beta \gamma - \alpha^2 = 1$ $A = \pi \varepsilon = \pi R_1 R_2$

 ϵ is the two-dimensional transverse emittance, and $\alpha,\,\beta$ and γ are known as the Twiss parameters

Emittance grow with targets

Momentum transfer by reaction in target increases transverse momentum spread, but in a thin target Δx does not change much.

The percentage of bivariate normally distributed data covered by an ellipse whose axes have a length of *numberOfSigmas* $\cdot \sigma$ can be obtained by integration of the probability distribution function over an elliptical area.

```
percentage = (1 - exp(-numberOfSigmas^2/2)).
```

This results in the following equation,

 $(x/\sigma_x)^2 + (y/\sigma_y)^2 = numberOfSigmas^2$.

where the numberOfSigmas is the radius of the "ellipse":

the *numberOfSigmas* =1 ellipse covers 39.3% of the data, the *numberOfSigmas* =2 ellipse 86.5%, and the *numberOfSigmas* =3 ellipse 98.9%.

From the formula above we can show that if we want to cover *p* percent of the data, we have to chose *numberOfSigmas* as

numberOfSigmas = $\sqrt{-2 \ln(1-p/100)}$.

For covering 95% of the data we calculate *numberOfSigmas* = 2.45.

Resolving power (95%) = $\frac{(x|\delta)}{\Delta x (2.45 \sigma)}$

The beam size : important for the design

Ellipse Area = $\pi(\det \sigma)^{1/2}$

Emittance ε = det σ is constant for fixed energy & conservative forces (Liouville's Theorem)

Note: ε shrinks (increases) with acceleration (deceleration); Dissipative forces: ε increases in gases; electron, stochastic, laser cooling

 $\sigma = \begin{pmatrix} \sigma_{11} \sigma_{21} \\ \sigma_{21} \sigma_{22} \end{pmatrix} = \epsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$

Angular acceptance

The reaction products exit from the target with an Angular dispersion

Vacuum chamber limitation induces beam losses = less transmission

dS

Primary beam

 $\frac{dS}{2}$

 $d\Omega(strd) =$

 The acceptance is measured in steradian

 $B\rho$ Acceptance = \pm Xmax / R_{16}

Modelling of ion optical transport lines

1. Trajectories : exact equations

integrate the particle equation of motion using mesh based maps for E and B fields [field map 3D]

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$

Examples of codes : ZGOUBY

But generally we can do simpler : Matrix approach

Transfer matrix formalism

Complete system is represented in first order by one Matrix Rsystem = $T_n T_{n-1} \dots T_0$

Focal points

Achromatic system:	
T16= T26= 0	
(x δp) = (a δp)	

Exercise 1: Imagine a spectrometer with a dispersion of 30 cm/% and beam width of 1 mm FWHM on the focal plan detector.

What is the resolving power R ?

- a) 30
- b) 30000
- c) 1500

Exercise 2:

For covering 95% of the beam ellipse data which value of sigma in ΔX we should use for calculating the resolving power?

- a) 1**σ**
- b) 2.35 σ (FWHM)
- c) 2.45 **σ**

Supplemental slides

Transfer matrix formalism

Following Taylor expansion the trajectory component Xi after propagation through an ion optical element can be calculated from

$$X_{i} = \sum_{j} Y_{j} \left\{ (X_{i} \mid Y_{j}) + \sum_{k} \frac{Y_{k}}{2} \left\{ (X_{i} \mid Y_{j}Y_{k}) + \sum_{l} \frac{Y_{l}}{3} \left\{ (X_{i} \mid Y_{j}Y_{k}Y_{l}) + \cdots \right\} \right\} \right\},$$

where Yi are the components of the trajectory before the ion optical element, and (Xi | Yj), (Xi | YjYk), (Xi | YjYkYI), . . . are the first-order, second-order, third-order, . . . transfer coefficients

This can be described as matrix–vector multiplication with :

 6×6 matrix in first order 6×6^2 matrix in second order, 6×6^3 matrix in third order, etc.

Transfer matrix formalism

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix} = \begin{pmatrix} T_{11} & T_{12} & T_{13} & T_{14} & T_{15} & T_{16} \\ T_{21} & T_{22} & T_{23} & T_{24} & T_{25} & T_{26} \\ T_{31} & T_{32} & T_{33} & T_{34} & T_{35} & T_{36} \\ T_{41} & T_{42} & T_{43} & T_{44} & T_{45} & T_{46} \\ T_{51} & T_{52} & T_{53} & T_{54} & T_{55} & T_{56} \\ T_{61} & T_{62} & T_{63} & T_{64} & T_{65} & T_{66} \end{pmatrix} \begin{bmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \\ l_0 \\ \delta_0 \end{bmatrix}$$

$$T = \begin{pmatrix} (x|x) & (x|a) & (x|y) & (x|b) & (x|l) & (x|\delta) \\ (a|x) & (a|a) & (a|y) & (a|b) & (x|l) & (a|\delta) \\ (y|x) & (y|a) & (y|y) & (y|b) & (x|l) & (y|\delta) \\ (b|x) & (b|a) & (b|y) & (b|b) & (x|l) & (a|\delta) \\ (l|x) & (l|a) & (l|y) & (l|b) & (x|l) & (l|\delta) \\ (\delta|x) & (\delta|a) & (\delta|y) & (\delta|b) & (x|l) & (\delta|\delta) \end{pmatrix}$$