Production of Exotic Nuclei

CSIC

Exotic Nuclei and Radiactive Beams

- Introduction
- Exotic Nuclei :
 - Production modes
 - Separation
 - Identification
- Radioactive Beams
- References:

"The why and how of Radioactive beam Research", Mark Huyse, "In-flight separation of projectile fragments", David Morrisey and Brad Sherril "Isotope separation on line and post-acceleration", P. Van Duppen http://www.euroschoolonexoticbeams.be/site/pages/lecture_notes

Open Questions in Nuclear Physics

¿ How does the complexity of nuclear structure arise from the interaction between nucleons? What are the limits of nuclear stability?

How and where in the Universe are the chemical elements produced?

2024

The NuPECC Long Range Plan 2024 for European Nuclear Physics

Observables:

Basic ground state properties: mass, radius, moments J, μ, Q Half-life y decay process Transition probabilities Cross sections

After Nuclear Physics Long Range Plan 2017 New LRP released Nov 2024 https://www.nupecc.org/lrp2024 /Documents/nupecc_lrp2024.pdf

Production

- The discovery of a new element/isotope depends of many factors:
- Production method: various mechanism of nuclear reactions.
- Efficent separation and transportation
- Detection method

Yield Requirements Rate Access				
	~1/week	Existence	Z=107, 108, 109, à GSI Z < 40 GANIL, GSI, RIKEN, MSU	
	~10/day	Identification		
	~100/day	Mass = Z+N	β-decay gives	
	~1/min	β (T 1/2, P xn)	first information of a new isotope.	
	1/sec	β-γ, β- η , β- p	 ✓ When the production is high ⇒ detailed structure 	
	100/sec	↓ β-γ-γ, β-η-γ, β-ρ-γ	information can be achieved.	
	10 ⁴ /sec			

Exotic Nuclei

Situated far from the valley of Stability Very different N/Z compare to the stable one Close to the drip lines : B_n =0, B_p =0 at the frontier of discovery

Why Study Exotic Nuclei?

Explore the different degrees of freedom of the system in isospin, T, in excitation energy, E_x, spin, J, level density, p

CSIC

Stringent test of Theoretical Models
Observation of new decay modes
Measurement of astrophysical interest
Halo structure
Evolution of shell structure

Physics interest?

Correlations: Pairs, influence of collective modes (Giant Resonances) Inflence of halo or skin of neutrons

Extension of rare phenomena in the space of Z, N, J, Ex, superdeformation,

Study of:Double magic nucleiSemi-magic nucleiRegion of shape transtionsNuclei with N~ZNuclei with N >> Z, halo nucleiNuclei very deformedNuclei of astrophysical interest

Production Methods

CSIC

Production

fusion – evaporation, @ GSI ${}^{54}Cr(4,7MeV/u) + {}^{209}Bi \rightarrow {}^{263}107 {}^{*}...$

¹²C + ⁵⁶Fe ou ¹⁶O + ⁵⁸Ni ... nuclei N~Z at Tandem energies

spallation p + La or U ou TH or W \rightarrow ¹¹⁵⁻¹³³Cs, rates of 1 à 10¹¹ at/s

transfer, 1 or several nucleons pick up, stripping... inélastic ⁷⁶Ge (9 MeV/u) + Ta ou W → ⁶²Mn, ⁷¹⁻⁷³Cu

fragmentation of target or projectile p drip line Z < 30 @ GANIL N-rich A~65 GSI , A~45 GANIL

fission thermal ²³⁵U, ²³⁹Pu @ Grenoble ⁶⁸Fe, ⁷¹⁻⁷⁴Ni, ⁷⁹Cu, ⁶⁸⁻⁶⁹Co relativistic ²³⁵U (750 MeV/u) + Pb → 50 products

Production of Radioactive Beams

Energies of Outcoming beam

Production Methods

Separation at High Energy (See Talk by Teresa K)

magnetic dipole

 $B_{P} = \frac{mv}{q} [T \cdot m]$ Part with same charge, mass and v \rightarrow same rigidity Bp

velocity filter

Need Wien-vel-Filter to separate in velocity

electric dipole

Energy degrader

→ straggling (spread) in energy and angle

Fragment Separator - FRS

CSIC

In flight method

Different Spectrometer

GANIL / SPIRAL 2

SISSI

CIME

Existing GANIL facility

Production building

DESIR

LIR

Low energy beams from SPIRAL and SPIRAL2 Connected to S3 In construction Operative 2026-27 S3

> High-intensity stable beams on thin target + in-flight high-resolution separator

+ gas cell for stopping

LISE

First beams in November 2024

LINAG (high intensity d and stable beams

Steady increase of Beam Current @ RIKEN (Japan)

⁴⁰Mg (N=28) is largely deformed.
The origin is a mystery.
No theory can reproduces the data.

⁷⁸Ni (N=50) revealed as a doubly magic stronghold against nuclear deformation.Taniuchi et al., Nature 569, 53 (2019)

73 new isotopes discovered at RIKEN's RI Beam Factory (2017)

Quest for heavier super-heavies (Z=113) Success in producing and accelerating high intensity vanadium beam

- Cleared the way for producing element 119 -(2017)

Mana J.a. Boigo, i toudouon of Exotio Mario

Facility for Rare Isotope Beams, FRIB

Maria J.G^a Borge, Production of Exotic Nuclei

CSIC

Physics Program

- Properties of atomic nuclei
 - Develop a predictive model of nuclei and their interactions
 - Many-body quantum problem: intellectual overlap to mesoscopic science, quar dots, atomic clusters, etc.

Astrophysics: What happens inside stars?

- Origin of the elements in the cosmos
- Explosive environments: novae, supernovae, X-ray bursts ...
- Properties of neutron stars

Tests of laws of nature

• Effects of symmetry violations are amplified in certain nuclei

CSIC

Societal applications and benefits

• Medicine, energy, material sciences, national security

- R3B, HISPEC/DESPEC, EXL/ELISe, MATS
- 11 Spanish research groups Involved

Design parameters U ²⁸⁺				
	SIS18	SIS100		
Energy	200 MeV/u	1.5 GeV/u		
lons per cycle	1.5 x 10 ¹¹	5 x 10 ¹¹		
Repetition rate	2.7 Hz	0.3 Hz		

Gain factors (compared with GSI):

- 100-1000 x intensity
- 10 x energy
- antiproton beams
- system cooler storage rings

Talk by Olof Tengblad

Nuclei

Isotope production

ISOLDE Isotope Separation On-Line

Target - Ion-source matrix: a chemical laboratory

ISOLDE Targets

- Main challenge: extracting the 10⁻¹ 10¹² nuclei produced in the reaction from the 10²³ nuclei in the target
- Targets:

UCx, SiC, Ta, LaCx, CaO, ZrO....

• The diffusion into the ion source is controlled by the target and transfer line temperature

Monte Carlo Simulation of ISOLDE production

ISOLDE Main potential

Surface & plasma ionization

Laser Ionization source

Separation @ ISOL

ESIC

Maria J.G^a Borge, Production of Exotic Nuclei

E

Mass separators @ ISOLDE

- The radioactive ions are accelerated at 20 – 60 kV and sent to the separating magnets.
- GPS (General Purpose)
 - Magnetic dipole + electrostatic switchyard
 - Can separate simultaneously 3 masses
 - m/ Δ m = 1000
- HRS (High Resolution)
 - 2 Magnetic dipoles
 - Separation power
 - m/Δm = 5000

CSIC

Post-accelerator: REX-ISOLDE → HIE-ISOLDE

The ISOLDE facility and set-ups

Summary: Two production Methods

SPIRAL2 Project

Phase 1: High intensity stable beams + Experimental rooms (S³ + NFS)
Phase 2: High-intensity low-energy (DESIR) & post-accelerated Radioactive Ion Beam facility

Reaction at High Energy @GSI \rightarrow R3B @ FAIR

