β-delayed neutron emission: Measurement of emission probabilities

J.L.Tain Instituto de Fisica Corpuscular CSIC-Univ. Valencia http://webgamma.ific.uv.es

Beta-delayed neutron emission is an exotic process that occurs in neutron rich nuclei whenever the neutron separation energy in the daughter S_n is smaller than the available decay energy window Q_{β}

Beta-delayed multiple neutron emission can also occur whenever S_{2n} , S_{3n} , ... are smaller than Q_{β}

A,Z A,Z+1 A-1,Z+1 A-2,Z+1

$$P_{xn}$$
: x-neutron emission probability

$$P_{1n} = \frac{\int_{0}^{Q_{\beta}} \frac{\Gamma_{1n}(E_{x})}{\Gamma_{tot}(E_{x})} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) \cdot dE_{x}}{\int_{0}^{Q_{\beta}} S_{\beta}(E_{x}) \cdot f(Q_{\beta} - E_{x}) dE_{x}}$$
$$\Gamma_{tot} = \Gamma_{\gamma} + \Gamma_{1n} + \Gamma_{2n} + \dots$$

Total neutron emission probability

Neutron emission multiplicity $\langle n \rangle = \sum_{x>0} x P_{xn}$

 $P_n = \sum P_{xn}$

x>0

Beta strength:

$$S_{\beta}(E_{x}) = \frac{1}{D} \frac{g_{A}^{2}}{g_{V}^{2}} \frac{1}{2J_{i}+1} \left| \left\langle f \left\| M_{\lambda \pi}^{\beta} \right\| i \right\rangle \right|^{2}$$
$$= \frac{I_{\beta}(E_{x})}{T_{1/2} f(Q_{\beta} - E_{x})}$$

Measured P_n values versus expected

Nuclear power reactors: delayed neutron fraction

- Some fission products are β n emitters
- They contribute with a small fraction (β <1%) to the total number of neutrons in a reactor
- They are however essential for the mechanical control of reactor power

Fission yields as a function of A

Prompt neutrons vs. delayed neutrons

Isotope	fission cross-section 0.025eV / 2MeV	prompt neutrons 0.025eV / 2MeV	delayed neutrons 0.025eV / 2MeV
235U	585 / 1.27	2.42 / 2.63	0.0162 / 0.0165
238U	0.000027 / 0.57	2.36 / 2.60	0.0478 / 0.0478
233U	531 / 1.98	2.48 / 2.63	0.0067 / 0.0077
239Pu	747 / 1.93	2.87 / 3.16	0.0065 / 0.0067
241Pu	1 012 / 1.76	2.92 / 3.21	0.0160 / 0.0160

Thermal energies

- The time evolution of delayed neutron fraction is represented by six (eight) "groups of isotopes"
- The group parameters are fissile nucleus dependent and neutron energy dependent
- They are obtained from integral measurements
- The time evolution of reactor power after sudden variations of the reactivity ρ is modulated by the delayed neutron fraction β

 k_{eff} : effective multiplication factor

	Possible precursor nuclei	Mean energy (MeV)	Averag	e half-lif group [s	e of the 5]	Dela fi	ayed neu raction [tron %]
i			235U	239Pu	233U	235U	239Pu	233U
1	87Br, 142Cs	0.25	55.72	54.28	55.0	0.021	0.0072	0.0226
2	137I, 88Br	0.56	22.72	23.4	20.57	0.140	0.0626	0.0786
3	138I, 89Br,	0.42	6 22	5 60	5.00	0 1 2 6	0.0444	0.0659
	(93,94)Rb	0.45	0.22	J.00	5.00	0.120	0.0444	0.0056
4	139I, (93,94)Kr	0.62	2.2	212	212	0.252	0 0695	0 0720
	143Xe, (90,92)Br	0.02	2.5	2.15	2.15	0.232	0.0005	0.0750
5	140I, 145Cs	0.42	0.61	0.618	0.615	0.074	0.018	0.0135
6	(Br, Rb, As etc.)	-	0.23	0.257	0.277	0.027	0.0093	0.0087
		Total				0.64	0.21	0.26

Thermal energies

Microscopic summation calculations of \overline{v}_d

- A more fundamental and generic approach to the estimation of β_{eff}
- Microscopic summation calculations lack still the accuracy of Keepin sixgroup formula
- Reason: inaccuracies in fission yields *Y* and delayed neutron emission probabilities P_n
- Improvement of P_n values and comparison with integral measurements can constrain Y

Number of delayed neutrons per fission

$$\overline{V}_d = \sum_i Y_i \cdot P_n^i$$

Can be used to identify P_n values that should be revisited

Astrophysics: The r-process

R-process: A short and very high neutron flux $(n_n > 10^{20} \text{ g/cm}^3)$ produces very neutron-rich nuclei by successive neutron captures in a short time, which then decay to stability.

The r-process astrophysical site: Core Collapse Supernova Event

NS or BH remnant

3D simulation Burrows, Nature 589 (2021) 29

Extremely old stars show solar r-process abundances

Conditions for synthesis of heaviest elements are not found in simulations

Are very large magnetic fields and rotations needed?

The r-process astrophysical site: Neutron Star Merger

Abbott+, PhysRevLett 119 (2017) 161101

Followed by detection of kilonova EM emission (*Shappee+, Sience*)

First indication of r-process nucleosynthesis

Watson+, Nature 574 (2019) 497

Importance of T_{1/2} and P_n values in r-process nucleosynthesis

Comparison of global calculations: P_n

How reliable are the calculations?

- Moeller+, PRC67 (2003) 055802: FRDM+QRPA
- Marketin+, PRC93 (2016)
 025805: RHB+RQRPA
- Koura+, PTP113(2005)305 & PTP84(1990)641 : KTUY+GT2

Sensitivity check:

Mumpower+, ProgPartNucPhys86 (2016) 86

$F = 100 \sum |X(A) - X_b(A)|$

Impact of P_n

Arcones+, PRC83(2011)045809

low entropy hot wind

high entropy hot wind

cold wind

neutron star merger

110

120

130

Measurement of P_n values

- The best method is by direct detection of the neutrons emitted
- Neutrons are neutral particles thus their detection require the production of electromagnetically interacting particles
- Reactions used: nucleus scattering, charged particle producing reactions, radiative capture, fission
- A useful reaction is ³He(n,³H)¹H, with Q=+764keV which has a large cross-section at thermal energies

 ³He is a (rare) gas that can be used as the sensitive gas of proportional counters

 Moderation of neutron energy by scattering on hydrogen is very useful to thermalize its energy

Nucleus	1-α	ູມ	Ν
¹Н	1	1	18
²H	0.889	0.725	24
⁴He	0.640	0.425	41
¹² C	0.284	0.158	111
⁵⁶ Fe	0.069	0.035	500
²⁰⁸ Pb	0.019	0.010	1823

$$\left[\frac{E}{E_0}\right]_{\max} = \frac{(A^2 - 1)^2}{(A+1)^2} = \alpha$$

Maximum energy loss: 1- α

Slowing down parameter: $\xi = \left\langle \ln \frac{E_0}{E} \right\rangle = 1 + \frac{(A-1)^2}{2A} \ln \frac{A-1}{A+1}$

N: cumber of collisions to bring E_n from 1MeV to 25meV

Moderated neutron neutron counter

 Array of ³He filled proportional tubes inside a neutron energy moderator polyethylene (PE) matrix

Experiment at ISOL facility: production and selection of isotopes

JYFL Accelerator Laboratory

Isotope	Rate (s ⁻¹)	Isotope	Rate (s ⁻¹)
⁸⁸ Br	1450	⁸⁵ Ge	6
⁹⁴ Rb	1030	⁸⁵ As	175
95Rb	760	⁸⁶ As	30
¹³⁷	100	⁹¹ Br	80

Pure isotopic beams

JYFLTRAP Penning trap: isotopic purification

Frequency (MHz)

Experimental setup:

BELEN-20 detector

20 Ø2.5cm×60cm 3He tubes @20atm

Neutron background shield: 20cm PE

Self triggered DACQ: -Time-energy pairs for every neutron or β -Clean noise separation -Minimum dead time:<0.5%

- 30keV beam implanted on tape
- Si or plastic detector for β detection
- HPGe detector for γ detection

Data analysis

- To obtain P_n we need to count the total number of decays and the number of decays followed by n emission
- For this we count β and n or βn coincidences

10²

10

1

10⁻¹

- We need to disentangle the counts from the nucleus of interest from other nuclei
- For this we measure grow and/or decay curves of the activity and fit with appropriate solutions of the Bateman equations

Solution of Bateman equations from Skrable et al., Health. Phys. 27 (1974) 155)

Equations:

 $\frac{dN_1}{dt} = P_1 - \lambda_1 N_1$ $\frac{dN_2}{dt} = P_2 + \lambda_1 b_{1,2} N_1 - \lambda_2 N_2$... $\frac{dN_m}{dt} = P_m + \lambda_{m,1} b_{m,1,m} N_{m,1} - \lambda_m N_m$

Measured activity: $A_{m}^{\beta}(t) = \overline{\varepsilon}_{\beta} \lambda_{m} N_{m}(t)$ $A_{m}^{n}(t) = \overline{\varepsilon}_{n} P_{n} \lambda_{m} N_{m}(t)$

Solution (number of nuclei as a function of time):

$$N_{m}(t) = \sum_{i=1}^{m} \left[\left(\prod_{j=i}^{m-1} \lambda_{j} b_{j,j+1} \right) \times \sum_{j=i}^{m} \left(\frac{N_{i}^{0} e^{\lambda_{j} t}}{\prod\limits_{k=i,k\neq j}^{n} (\lambda_{k} - \lambda_{j})} + \frac{P_{i} \left(1 - e^{\lambda_{j} t} \right)}{\lambda_{j} \prod\limits_{k=i,k\neq j}^{n} (\lambda_{k} - \lambda_{j})} \right]$$

Determination of average efficiencies (nucleus dependent): source of systematic errors

Agramunt+, NIMA807 (2016) 69

Advanced Implantation Detector Array (AIDA)

- Stack of six Si DSSD
- Size: 1mm×72mm×72mm
- Granularity: 128×128 pixels (0.51mm strip)
- Low gain (implant) and high gain (betas) preamplifiers
- Total data readout DACQ (1536 ch)

- Implants and betas are distinguished by the energy released in the detector
- Betas corresponding to each implanted ion are associated by spatial correlations

Implant position distribution

Implant-beta spatial correlation

BRIKEN neutron counter

Tarifeño+, JInstr1(2017)P04006

Hybrid setup: - 140 ³He tubes (4 types) - 2 CLOVER HPGe

BRIKEN Gasific70 DACQ:

- ³He tubes, CLOVER, ancillaries
- SIS3316 and SIS3302 digitizers
- Self triggered, common clock

Agramunt+, NIMA807(2016)69

- Data analysis:
- Each implanted ion in AIDA is identified using the information from BigRIPS in prompt coincidence
- The associated β decay is assigned to the identified ion on a statistical basis from implant-β space-time correlations (delayed coincidence)
- Random coincidences are quantified from the backwards in time correlations
- Fitting with appropriate solutions of the Bateman equations serves to separate parent from descendant β signals

Tolosa+, NIMA925(2019)133

- Adding the condition that

 2, ... neutrons come
 within ~200µs of the β we
 obtain the implant-β1n,
 implant-β2n, ... time
 correlations
- Random 1n, 2n, ... events contribute to the implantβxn correlated background and must be corrected

 β2n decay contributes to the counts observed in β1n correlations and should be corrected

$$N_{1n}(t) = \varepsilon_n P_{1n} N_{dec} + 2\varepsilon_n (1 - \varepsilon_n) P_{2n} N_{dec}$$
$$N_{2n}(t) = (\varepsilon_n)^2 P_{2n} N_{dec}$$
$$N_{1n(2n)}(t) = 2 \frac{1 - \varepsilon_n}{\varepsilon_n} N_{2n}(t)$$

 To disentangle parent and descendant contributions we fit the time spectra with appropriate solutions of Bateman equations

Tolosa+, NIMA925 (2019) 133

Fit functions:

 $f_{\beta}(t) = \sum_{i \in \beta} \overline{\varepsilon}_{\beta}^{i} \lambda_{i} N_{i}(t)$

$$f_{\beta 1 n}(t) = \sum_{j \in \beta 1 n} \overline{\varepsilon}_{\beta}^{j} \overline{\varepsilon}_{n}^{j} P_{1 n}^{j} \lambda_{j} N_{j}(t)$$

$$f_{\beta 2n}(t) = \sum_{k \in \beta 2n} \overline{\varepsilon}_{\beta}^{k} (\overline{\varepsilon}_{n}^{k})^{2} P_{2n}^{k} \lambda_{k} N_{k}(t)$$

$$N_{k}(t) = N_{1} \prod_{i=1}^{k-1} (b_{i,i+1}\lambda_{i}) \times \sum_{i=1}^{k} \frac{e^{-\lambda_{i}t}}{\prod_{j=1\neq i}^{k} (\lambda_{j} - \lambda_{i})}$$

$$b_{i,i+1} = P_{1n}^{i}, P_{2n}^{i} \text{ or } 1 - P_{1n}^{i} - P_{2n}^{i}$$

Ni isotopes: P_{1n} compared with theory and previous data

(from Alvaro Tolosa PhD Thesis)

Appendix: Measurement of β-delayed neutron spectra

Time of Flight Spectrometer

Start: n-generation related signal Stop detector: organic scintillator (liquid for γ/n discrimination)

MONSTER @JYFL

✓ Event-by-event measurement ✓Good intrinsic efficiency **X** Poor energy resolution **×** Non-linear energy response

A.R. Garcia+, JINST/(2012)C05012

ToF spectrum deconvolution using EM algorithm (Bayesian iterative)

Comparison with previous measurement

A. Perez-Rada, PhD Thesis, 2023 Geant4 simulated Energy vs. ToF response matrix

First-ever measurement of ⁸⁶As βDN spectrum