

Neutron Detection

J.L. Tain

Jose.Luis.Tain@ific.uv.es http://webgamma.ific.uv.es/gamma/

Instituto de Física Corpuscular

C.S.I.C - Univ. Valencia

Neutrons

Particle Properties 2004

n

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Mass $m = 939.56536 \pm 0.00008$ MeV ^[a] $m_n - m_p = 1.2933317 \pm 0.0000005$ MeV Mean life $\tau = 885.7 \pm 0.8$ s $c\tau = 2.655 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \,\mu_N$ Electric dipole moment $d < 0.63 \times 10^{-25} e \text{ cm}$, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Electric polarizability $\alpha = (11.6 \pm 1.5) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 2.0) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.4 \pm 1.1) \times 10^{-21} e$ Mean $n\overline{n}$ -oscillation time > 8.6×10^7 s, CL = 90% (free n) Mean $n\overline{n}$ -oscillation time > 1.3×10^8 s, CL = 90% ^[e] (bound n)

- Proposed: E. Rutherford, 1920
- Discovery: J. Chadwick, 1932
- Neutron reactions: E. Fermi and others, 1934-1935
- Compound nucleus model: N. Bohr, G. Breit-E. Wigner,1936
- Neutrons in astrophysics: G. Gamow, 1937
- Neutron induced fission: O.
 Hahn, F. Strassmann, L. Meitner,
 O. Frisch, 1939
- Chain reaction: E. Fermi, 1942

Nuclear neutron reactions

- Reaction channels:
 - elastic scattering: (n,n)
 - inelastic scattering: (n,n'γ)
 - radiative capture: (n,γ)
 - multiplication: (n,xny)
 - charged particle
 production: (n,pγ), (n,αγ), ...
 - fission: (n,xn^{A1}Z1^{A2}Z2)
 - $\sigma_{tot} = \sigma_{el} + \sigma_{cap} + \dots$
- No Coulomb barrier

•

- Reaction thresholds
- Energy dependence
- No predictive models

 $\log E_n$

Common reactions used for neutron detection at low energies:

Elastic scattering:

- $n + {}^{1}H \rightarrow n + {}^{1}H$
- $n + {}^{2}H \rightarrow n + {}^{2}H$ (abund.=0.015%)

Charged particle:

- $n + {}^{3}He \rightarrow {}^{3}H + {}^{1}H + 0.764 \text{ MeV} (abund.=0.00014\%)$
- $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 \text{ MeV}$ (abund.=7.5%)
- n + ¹⁰B \rightarrow ⁷Li* + ⁴He \rightarrow ⁷Li + ⁴He + 0.48 MeV γ +2.3 MeV (abund.=19.9%,

b.r.=93%)

Radiative capture:

- $n + {}^{155}Gd \rightarrow {}^{156}Gd^* \rightarrow \gamma$ -ray + CE spectrum (abund.=14.8%)
- $n + {}^{157}Gd \rightarrow {}^{158}Gd^* \rightarrow \gamma$ -ray + CE spectrum (abund.=15.7%) Fission:
- $n + {}^{235}U \rightarrow fission fragments + ~160 MeV$
- $n + {}^{239}Pu \rightarrow fission \ fragments + ~160 \ MeV$
- $n + {}^{238}U \rightarrow fission \ fragments + ~160 \ MeV$

Cross section energy dependence of useful reactions

Cross section energy dependence of moderators

Neutron detectors:

Counters (only identification):

- Moderated
- Not moderated

Spectrometers (energy determination):

- Recoil
- Charged particle reaction
- Time of Flight
- Slowing down

Physical form:

- Gas: ionization and proportional chambers
- Liquid: scintillators
- Solid: scintillators, semiconductor

Active material:

- Self-detecting
- Loaded
- Lined

Miscellanea of detectors:

- Li glass scintillator: $Li_2O + SiO_2 + ...$
- Li crystal scintillator: Lil(Eu), LiF
- Li + ZnS(Ag) scintillator
- Li + thermo-luminiscent material
- Gd crystal scintillators: Gd₂O₂S(Pr),...
- BAs semiconductor

Gas-filled chamber

Figure 1: Expected pulse height spectrum from a ³He tube. The two steps in the spectrum are caused by one of the reaction products hitting the detector wall. In area (a), the triton energy is fully deposited, but the proton only deposited a fraction of its energy, and vise versa in area (b).

dN/dE

Fig. 13.3 Pulse-height vs applied-voltage curves to illustrate ionization, proportional, and Geiger-Mueller regions of operation.

Fig. 1. Measured and calculated pulse height distributions for 0.565 MeV neutrons incident on a cylindrical proportional counter (active volume 38 mm diameter \times 178 mm). From Ref.

• BF₃ (reaction)

Gaseous ionization detectors

Townsend coefficient

Multiplication $M = e^{\int \alpha(x) dx}$

Cylindrical configuration Electron drift and avalanche formation

³He chambers

Fig. 2. Response of the ³He ionization chamber to monoenergetic neutrons produced by the ⁷Li(p,n)⁷Be reaction. E_n is the

Foil with deposit + Si-detector

• Reaction: $n + {}^{6}Li \rightarrow t + \alpha$

Neutron scattering

s-wave (I=0) elastic scattering:

Energy-momentum conservation:

$$\frac{E}{E_0} = \frac{\left[A^2 + 1 + 2A \cdot \cos\Theta_{\rm CMS}\right]}{\left(A+1\right)^2}$$

Isotropic in CMS:

There is a minimum neutron energy (maximum recoil energy) after the collision dependent on A:

$$\left[\frac{E}{E_0}\right]_{\min} = \frac{(A - 1)^2}{(A + 1)^2} = \alpha$$

1-α: H (1.0), D(0.89), C(0.28), Fe(0.069), Pb(0.019)

ELASTIC SCATTERING ANGULAR DISTRIBUTION

BC501/NE213 liquid scintillators

$$\begin{split} & \mathsf{C}_1\mathsf{H}_{1.212} \\ & \rho = 0.874 \text{g/cm}^3 \\ & \mathsf{n} \; (@425 \text{nm}) = 1.53 \\ & \tau = 3.2 \; (32.3, 270) \; \text{ns} \end{split}$$

Monte Carlo simulations of neutron interactions and detectors

- Requires nuclear reaction data
- May require material response (light production, ...)

Birth of modern MC approach

• General purpose codes: MCNP, GEANT, ... and specific codes: NRESP, SCINFUL, ...

Luminescence in organic materials

The non-radiative transfer mechanism between excited centers induces an energy-loss dependent light production ...

... and a varying time distribution

(In reality there is some dependence on chemical composition, fabrication, age, ...)

Simulations with **GEANT3/GCALOR** \rightarrow $\Delta L = L(E) - L(E - \Delta E)$

(assumed same α and ¹²C light curves in BC501 & BC537)

BC501/NE213

104

Pulse Shape Discrimination

Multi-detector: Neutron Wall (EUROBALL)

 $\frac{\Delta\Omega}{4\pi} = 25\%$ $\varepsilon_{\rm int} = 50\%$

BC501 liquid scintillator

Johan Nyberg, AGATA meeting Orsay, 2004-08-22

Time of Flight Spectrometer

Start Time: time-pulsed origin, accompanying radiation, ... (not the neutron)

Stop Time: neutron detector

Energy resolution:

$$\frac{\Delta E}{E} = 2\sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}$$

Long flight path, short detectors, good time resolution

ToF spectrometer: MoNA (NSCL-Michigan)

144 bars 200x10x10 cm³ plastic scintillators+ iron converters

ToF spectrometer: TONERRE (LPC-Caen)

BC400 Plastic scintillator

$$\frac{\Delta \Omega}{4\pi} = 50 \%$$
$$\varepsilon_{\text{int}} = 25 \%$$
$$\frac{\Delta E}{E} = 10 \%$$

NIMA 455 (2000) 412

ToF spectrometer: MONSTER (CIEMAT, VECC, JYFL, UPC, IFIC)

Ø=20cm x L=5cm

$$\frac{\Delta\Omega}{4\pi} > 5-10 \%$$
$$\varepsilon_{\rm int} = 50 \%$$

Digital DAQ 14bits & 1 Gsample/s

A.R. García et al. JINST 7 C05012

Neutron moderation:

After many collisions:

Nucleus	1-α	ţ	N (1MeV→ 25 meV)
¹Н	1	1	18
² H	0.889	0.725	24
⁴He	0.640	0.425	41
¹² C	0.284	0.158	111
⁵⁶ Fe	0.069	0.035	500
²⁰⁸ Pb	0.019	0.010	1823

Slowing-down parameter: $\xi = \langle ln \frac{E_0}{E} \rangle = 1 + \frac{(A-1)^2}{2A} ln \frac{A-1}{A+1}$

Number of collisions to reach an energy:

$$N = \frac{\ln E_0 / E_f}{\xi}$$

Slowing-down time:
$$t = \sqrt{\frac{K}{E_f}} - t_0$$
 : $K(\xi, \sigma_{ela}); t_0(E_0, \xi, \sigma_{ela})$

Slowing Down Spectrometer: LSDS (LANL-Los Alamos)

Lead block + sample+counters

Bonner spheres: NEMUS (PTB-Braunschweig)

Polyethylene sphere + ³He proportional counter

Monte Carlo simulations of neutron detectors

... allow to obtain spectrometric information

Deconvolution (unfolding):

Given the response of an apparatus as a function of a parameter, what is the distribution of parameter values which produces a measured data distribution?

Inverse (linear) problem:

Solution is NOT:

$$d = R \cdot p$$
; $d_i = \sum_j R_{ij} \cdot p_j$, $\forall i$
 $p = R^{-1} \cdot d$

Use statistical inference:

- not-unique solution (σ_d)
- "a priori" information
- several methods:

Linear regularization (LR): $p = (R + \lambda H)^{-1} \cdot d$

Maximum Entropy (ME):

 $p_{j}^{(m+1)} = p_{j}^{(m)} \exp\left(\frac{1}{\lambda} \sum_{i} \frac{R_{ij}}{\sigma_{i}^{2}} \left(d_{i} - \sum_{k} R_{ik} p_{k}^{(m)}\right)\right)$ (EM): $p_{j}^{(m+1)} = \frac{1}{\sum_{i} R_{ij}} \sum_{i} \frac{R_{ij} p_{j}^{(m)} d_{i}}{\sum_{i} R_{ik} p_{k}^{(m)}}$ Expectation Maximization (EM):

Deconvolution

Bonner spheres measurements

The Long Counter

Uni-directional, flat-efficiency

Moderator+shielding +BF₃

Figure 7-16. Long Counter

Moderated cylindrical array: NERO (NSCL-Michigan)

Polyethylene block (60x60x80cm³) 16 ³He and 44 BF₃ proportional counters

 $\varepsilon = 40 \%$

Berlin Neutron Ball

1.5 m³ 0.4% Gd-loaded liquid scintillator

Fission chamber:

U, **Pu** + gas chamber

NIMA336 (1993) 226

Beam Direction

Fig. 1. Schematic diagram of the ionization chamber housing. Dimensions are in centimeters.

