Optica lónica & Espectrómetros

1^{era} Clase: 21/01/2025, 09:30 - 10:30 Definiciones; Formalismo; Principales elementos de óptica iónica

2^{da} Clase: 28/01/2025, 09:30 - 10:30 Higher Orders ; Ejemplos

Prof. Dr. Teresa Kurtukian Nieto

IEM-CSIC, Madrid Grupo de Física Nuclear Experimental FNEXP

Ion optics

What we learned yesterday?

For a beam ellipse

Resolving power (95%) =
$$\frac{(x|\delta)}{\Delta x (2.45 \sigma)}$$

Why it works?

Thanks to the Lorentz force F and Newton's second law

1. Lorentz force: A charged particle moving in an electromagnetic field experiences a force.

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$$
Electic Magnetic
Force Force

This force causes a centripetal acceleration and consequently a circular motion of the particle in the medium based on the equations described below.

2. Newton's second law

Focusing Elements

Ion optics

Taylor expansion in x, a, y, b and δ

 $x_1 = (x|x) x_0 + (x|a) a_0 + (x|\delta)\delta + (x|x^2)x_0^2 + (x|xa) x_0a_0 + (x|a^2)a_0^2$

 $(x|x\delta) x_0 + (x|a\delta) a_0\delta + (x|\delta^2)\delta^2 + (x|y^2)y_0^2 + (x|yb) y_0b_0 + (x|b^2)b_0^2 + higher orders$

First order

$$(x \mid \dots) = \frac{\partial}{\partial x}$$

Higher orders : e.g.
$$(x|a^2) = \frac{\partial x}{\partial a \partial a} = T_{122}$$

Transfer matrix formalism

Following Taylor expansion the trajectory component Xi after propagation through an ion optical element can be calculated from

$$X_{i} = \sum_{j} Y_{j} \left\{ (X_{i} \mid Y_{j}) + \sum_{k} \frac{Y_{k}}{2} \left\{ (X_{i} \mid Y_{j}Y_{k}) + \sum_{l} \frac{Y_{l}}{3} \left\{ (X_{i} \mid Y_{j}Y_{k}Y_{l}) + \cdots \right\} \right\} \right\},\$$

where Yi are the components of the trajectory before the ion optical element, and (Xi | Yj), (Xi | YjYk), (Xi | YjYkYI), . . . are the first-order, second-order, third-order, . . . transfer coefficients

This can be described as matrix–vector multiplication with :

 6×6 matrix in first order 6×6^2 matrix in second order, 6×6^3 matrix in third order, etc.

Transfer matrix formalism

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix} = \begin{pmatrix} T_{11} & T_{12} & T_{13} & T_{14} & T_{15} & T_{16} \\ T_{21} & T_{22} & T_{23} & T_{24} & T_{25} & T_{26} \\ T_{31} & T_{32} & T_{33} & T_{34} & T_{35} & T_{36} \\ T_{41} & T_{42} & T_{43} & T_{44} & T_{45} & T_{46} \\ T_{51} & T_{52} & T_{53} & T_{54} & T_{55} & T_{56} \\ T_{61} & T_{62} & T_{63} & T_{64} & T_{65} & T_{66} \end{pmatrix} \begin{bmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \\ l_0 \\ \delta_0 \end{bmatrix}$$

$$T = \begin{pmatrix} (x|x) & (x|a) & (x|y) & (x|b) & (x|l) & (x|\delta) \\ (a|x) & (a|a) & (a|y) & (a|b) & (x|l) & (a|\delta) \\ (y|x) & (y|a) & (y|y) & (y|b) & (x|l) & (y|\delta) \\ (b|x) & (b|a) & (b|y) & (b|b) & (x|l) & (a|\delta) \\ (l|x) & (l|a) & (l|y) & (l|b) & (x|l) & (l|\delta) \\ (\delta|x) & (\delta|a) & (\delta|y) & (\delta|b) & (x|l) & (\delta|\delta) \end{pmatrix}$$

Transfer matrix formalism

Most crucial parameters :

 $T_{11} = magnification in horizontal$

 $T_{16} = dispersion in momentun = dispersion in B\rho$

 $T_{33} = magnification in vertical$

 $T_{12} = angular dependence in horizontal$

 $T_{34} = angular dependence in vertical$

Focal points


```
Achromatic system:
T16= T26= 0
(x|δp) = (a|δp)
```


MAGNETIC DIPOLE

M. QUADRUPOLE

M. SEXTUPOLE

Electric MULTIPOLE

Advanced Magnet Design

Canted Cosine Theta Design

nested arrangement of canted coils can possibly reach fields up to 16-20 T

LBNL

C-shape 2nd order

S-shape 3rd order

only aberrations of 0 order

Dipole

No aberrations

only aberrations of 1 order

Quadrupole

only aberrations of 2.order

Sextupole

only aberrations of 3 order

Octupole

object lens image Octu plane plane correction intensity distribution element in the image plane

Influence on m-pole elements on the aberrations up to fifth order.

A symbol \bigcirc indicates that multipole elements can not influence aberrations o the indicated order

	Zeroth Order	First Order	Second Order	Third Order	Fourth Order	Fifth Order
Dipole	х	х	x	х	x	x
Quadrupole	\bigcirc	х	x	x	x	x
Sextupole	0	0	X	X	X	Х
Octupole	0	\bigcirc	0	X	X	X
Decapole	\bigcirc	0	0	\bigcirc	X	x
Dodecapole	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	x

GSI FRAGMENT SEPARATOR FRS

GSI FRAGMENT SEPARATOR FRS

GICOSY

Nuclear Instruments and Methods in Physics Research B70 (1992) 286–297 North-Holland

The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions

H. Geissel, P. Armbruster, K.H. Behr, A. Brünle, K. Burkard, M. Chen¹, H. Folger,
B. Franczak, H. Keller, O. Klepper, B. Langenbeck, F. Nickel, E. Pfeng, M. Pfützner²,
E. Roeckl, K. Rykaczewski², I. Schall, D. Schardt, C. Scheidenberger, K.-H. Schmidt,
A. Schröter, T. Schwab, K. Sümmerer, M. Weber and G. Münzenberg

Gesellschaft für Schwerionenforschung, D-6100 Darmstadt, Germany

Table 2

Calculated ion-optical matrix elements of the standard highresolution achromatic mode at the central and final focal planes

Matrix element	At F ₂	At F4	
$\overline{(x \mid x)}$	0.79	1.00	
(x x') [cm/mrad]	0	0	
$(x \mid \delta p) [cm / \%]$	-6.81	0	
(x' x) [mrad/cm]	1.21	1.92	
$(\mathbf{x}' \mathbf{x}')$	1.27	1.00	
$(x' \delta p)$ [mrad/%]	0	· 0 · ·	
$(y \mid y)$	-1.13	0.83	
(y y') [cm/mrad]	0.007	0.011	
(y' y) [mrad/cm]	12.32	-27.84	
$(\mathbf{y}' \mathbf{y}')$	-0.81	0.83	

GSI FRAGMENT SEPARATOR FRS

20.000 m

GSI FRAGMENT SEPARATOR FRS degrader

GSI FRAGMENT SEPARATOR FRS

BIGRIPS RIKEN

MAGNETIC SECTOR

MAGNETIC SECTOR

MAGNETIC SECTOR

MAGNETIC SECTOR

MAGNETIC SECTOR

Comparison of Fragment Separators

device	Ω	∆p/p	$B\rho$	resolving	length	refe	rence
	(msr)	(%)	(T-m)	power†	(m)		
A1200	0.8/4.3	3.0	5.4	700/1500	22.	Sherrill	1992
A1900	8.0	5.4	6.0	~ 2900	35	Morrissey	2003
COMBAS	6.4	20.	4.5	4360	14.5	Artukh	1993
LISE	1.0	5.0	3.2	800	18.	Mueller	1991
FRS	0.2	2.0	18.	1500	73.	Geissel	1992
super-FRS [‡]	0.8	5.0	18.	1500	~ 140	Geissel	2003
RIPS	5.0	6.0	5.76	1500	21.	Kubo	1990
big-RIPS‡	8.0	6.0	9.0	1290/3300	77	Kubo	2003
RCNP	1.1	8.0	3.2	2000	14.8	Shimoda	1992

GSI FRAGMENT SEPARATOR FRS: high-order

Assume a short sextupole of strength S2 at some point in the system. Then the influence on the 2nd order coefficients can be expressed by the size of the 1st order. The influence of the coupling coefficient (x,aa) is given by (See table p. 108 in SLAC 75) :

$$d(x,aa)/dS_2 = 2(((x,a)_f(x,x) - (x,x)_f(x,a))(x,a)(x,a))$$

where $(x, a)_f$ and $(x, x)_f$ are taken at the end of the system and the other terms at the position of the sextupole.

only aberrations of 0 order

Dipole

No aberrations

Quadrupole

only aberrations of 2.order

Sextupole

only aberrations of 3 order

Octupole

lens

object

plane

image

plane

intensity distribution in the image plane Influence on m-pole elements on the aberrations up to fifth order.

A symbol \bigcirc indicates that multipole elements can not influence aberrations o the indicated order

	Zeroth Order	First Order	Second Order	Third Order	Fourth Order	Fifth Order
Dipole	х	х	x	х	x	x
Quadrupole	\bigcirc	х	x	x	x	x
Sextupole	0	0	X	X	X	Х
Octupole	0	\bigcirc	0	X	X	X
Decapole	\bigcirc	0	0	\bigcirc	X	x
Dodecapole	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	х

Then End