Introduction to LISE++

Christophe Rappold Samuel Escrig Teresa Kurtukian Nieto

Instituto de Estructura de la Materia (CSIC)

Master Interuniversitario en Física Nuclear

20-31 Enero, 2025

Motivation

It is possible to accelerate every stable isotope, from hydrogen to uranium-238, in order to obtain the primary beam.

Target

	²³⁸ U: 2 ¹⁰⁹	90			
	²⁰⁸ Pb: 2 10 ⁹	80			
	¹⁴⁴ Sm:2 10 ⁹ (ns, used once)				
	¹³⁶ Xe: 10 ¹⁰				
Stable ion	¹²⁴ Xe: 10 ¹⁰ (requires enriched material)				
	¹¹² Sn: ~10 ⁸ (requires enriched material)				
	¹⁰⁷ Ag: 4 10 ⁹				
sources	⁸⁶ Kr: 2 10 ¹⁰				
	⁷⁸ Kr: 2 10 ¹⁰ (requires enriched material)	20 40 60 80 100 120 140 Neutron number N			
	⁷⁶ Ge: 3 10 ⁸ (no standard beam, needs to	be developed)			
	⁶⁴ Ni: 5 10 ⁹ (requires enriched material)				
	⁵⁸ Ni: 5 10 ⁹	-			
	⁴⁸ Ca: 3 10 ⁷ (low intensity from the	ECR source when used for			
	pulsed				
	beams for SIS Or very very expensive)				

Production of radioactive ion beams

The dipole magnets affect different isotopes "like prisms affect light", separating the unwanted nuclei (of any isotope not currently being studied) out of the beam

Nuclei are filtered according to their charge to mass ratio (Q/A) in the magnetic field.

 $\mathsf{F}_{\mathsf{Lorentz}} = \mathsf{F}_{\mathsf{centripetal}}$

- $q\mathbf{v} \cdot \mathbf{B} = mv^2/\rho$
- $B\rho = \beta \gamma c m/q$

 $B\rho \sim A/Z$

ACHROMATIC MODE

- lons lose constant amount of energy in wedge
- All nuclei of same species arrive at same position on focal plane

MONOENERGETIC MODE

- Momentum spread compensated by different path lenths in degrader
- All fragments of same species have same energy
- Fragments preserve their spacial distribution

In-flight identification

0

- LISE++ is a free software, it can be downloaded online.
- Created by O.Tarasov y D.Bazin of MSU-NSCL (USA).
- Useful for calculating the production and transmission of exotic fragments for nuclear physics experiments.
- Several utilities, as range calculation and energy loss in materials, and a long etc.
- The best way to learn about LISE++ is playing/practising with it

- Set the primary beam characteristics (isotope, energy and intensity)
 - Set the fragment of interest

• Tune the magnetic fields (B) for the fragment of interest, depending on the spectrometer design

3

 Optimize the production target thickness (each single time that primary or secondary beam parameters are modified)

Useful options:

RIB distributions in position (X) and in energy (E)

• Useful options:

Spectrometer design: turn off elements, modify S2-wedge, insert a Faraday Cup, etc

LISE++ [C:\Users\domingo\Documents\work\Master	EisicaNuclear2013\Practica	IISE/IISE beginning Innl	-		
File Support Calculation Spectrome	eter designing				
: 🖹 🌐 Set-Up 💿 🖳 🔪	1	1 1			Leveller 1
Project	Given Name	Z-Q Length,m	Enable 🔺	Insert Mode	
650 MeV/u 1e+9 pps	Target		+	G before	T 🔘 Target
Eragment 96Cd48+ Strippe	r Stripper		+ =	ve Deloie	
Toget Pb 1500 mg/cm2	S0_slitY	0	+	C after	Stopper after Target
ST Drift	S0_slit⊠	0	+		W Vedge
S Dipole	D1	0 17.46	+	Move element	Material(Detector)
S Drift	S1_slits	0	+	Ĥ Up	
D1 Brho 7.5001 Tm	e S1-degrader		+		Faraday cup
S S1_sits Sits M Materi	al Steel pocket		NO	U Down	Den Dimension (Director)
-100 B +100 M Materi	al Nb foil		NO		Dispersive (Dipole)
Materi	al Steel pocket		NO	📳 Edit	F
D2 7.9001 Tm Materi	al MW11		NO		S Drift (space)
S S2_slits S15 Dipole	D2	0 18.11	+	A Delete	
-100 H +100 -100 V +100	al MW21		NO	OK OK	R Beam Rotation
M Scint21 H10C9 3.2 mm S Drift	S2_slits	0	+		E_=_ Electric dipole
S2_wedge	al Scint21		+ +	7 Help	G 🔜 Gas-filled separator
Selected bl	ock	D-90 ()		Total	C Compensating Dipole
Enable		Drift (space)		Blocks	K = BE separator
Let call aut	omatically 🔲	Block Length [m]	0	86	
Block name	= S1_slits	Length after	17.458		L
Biock Hall	C onco	this block [m] I		Length [m]	Z - Delmu (efficience) block
		Sequence number	6	73.148	Delay (enciency) block